Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012795

RESUMO

Axo-axonic cells (AACs), also called chandelier cells (ChCs) in the cerebral cortex, are the most distinctive type of GABAergic interneurons described in the neocortex, hippocampus, and basolateral amygdala (BLA). AACs selectively innervate glutamatergic projection neurons (PNs) at their axon initial segment (AIS), thus may exert decisive control over PN spiking and regulate PN functional ensembles. However, the brain-wide distribution, synaptic connectivity, and circuit function of AACs remain poorly understood, largely due to the lack of specific and reliable experimental tools. Here, we have established an intersectional genetic strategy that achieves specific and comprehensive targeting of AACs throughout the mouse brain based on their lineage (Nkx2.1) and molecular (Unc5b, Pthlh) markers. We discovered that AACs are deployed across essentially all the pallium-derived brain structures, including not only the dorsal pallium-derived neocortex and medial pallium-derived hippocampal formation, but also the lateral pallium-derived claustrum-insular complex, and the ventral pallium-derived extended amygdaloid complex and olfactory centers. AACs are also abundant in anterior olfactory nucleus, taenia tecta, and lateral septum. AACs show characteristic variations in density across neocortical areas and layers and across subregions of the hippocampal formation. Neocortical AACs comprise multiple laminar subtypes with distinct dendritic and axonal arborization patterns. Retrograde monosynaptic tracing from AACs across neocortical, hippocampal, and BLA regions reveal shared as well as distinct patterns of synaptic input. Specific and comprehensive targeting of AACs facilitates the study of their developmental genetic program and circuit function across brain structures, providing a ground truth platform for understanding the conservation and variation of a bona fide cell type across brain regions and species.


Whether we are memorising facts or reacting to a loud noise, nerve cells in different brain areas must be able to communicate with one another through precise, meaningful signals. Specialized nerve cells known as interneurons act as "traffic lights" to precisely regulate when and where this information flows in neural circuits. Axo-axonic cells are a rare type of inhibitory interneuron that are thought to be particularly important for controlling the passage of information between different groups of excitatory neurons. This is because they only connect to one key part of their target cell ­ the axon-initial segment ­ where the electrical signals needed for brain communication (known as action potentials) are initiated. Since axo-axonic cells are inhibitory interneurons, this connection effectively allows them to 'veto' the generation of these signals at their source. Although axo-axonic cells have been identified in three brain regions using traditional anatomical methods, there were no 'tags' readily available that can reliably identify them. Therefore, much about these cells remained unknown, including how widespread they are in the mammalian brain. To solve this problem, Raudales et al. investigated which genes are switched on in axo-axonic cells but not in other cells, identifying a unique molecular signature that could be used to mark, record, and manipulate these cells. Microscopy imaging of brain tissue from mice in which axo-axonic cells had been identified revealed that they are present in many more brain areas than previously thought, including nearly all regions of the broadly defined cerebral cortex and even the hypothalamus, which controls many innate behaviors. Axo-axonic cells were also 'wired up' differently, depending on where they were located; for example, those in brain areas associated with memory and emotions had wider-ranging input connections than other areas. The finding of Raudales et al. provide, for the first time, a method to directly track and manipulate axo-axonic cells in the brain. Since dysfunction in axo-axonic cells is also associated with neurological disorders like epilepsy and schizophrenia, gaining an insight into their distribution and connectivity could help to develop better treatments for these conditions.


Assuntos
Neurônios GABAérgicos , Interneurônios , Animais , Interneurônios/fisiologia , Interneurônios/metabolismo , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/metabolismo , Camundongos , Encéfalo/fisiologia , Encéfalo/citologia , Sinapses/fisiologia , Sinapses/metabolismo , Axônios/fisiologia , Axônios/metabolismo , Masculino
2.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562790

RESUMO

Adolescent inhibition of thalamo-cortical projections from postnatal day P20-50 leads to long lasting deficits in prefrontal cortex function and cognition in the adult mouse. While this suggests a role of thalamic activity in prefrontal cortex maturation, it is unclear how inhibition of these projections affects prefrontal circuit connectivity during adolescence. Here, we used chemogenetic tools to inhibit thalamo-prefrontal projections in the mouse from P20-35 and measured synaptic inputs to prefrontal pyramidal neurons by layer (either II/III or V/VI) and projection target twenty-four hours later using slice physiology. We found a decrease in the frequency of excitatory and inhibitory currents in layer II/III nucleus accumbens (NAc) and layer V/VI medio-dorsal thalamus projecting neurons while layer V/VI NAc-projecting neurons showed an increase in the amplitude of excitatory and inhibitory currents. Regarding cortical projections, the frequency of inhibitory but not excitatory currents was enhanced in contralateral mPFC-projecting neurons. Notably, despite these complex changes in individual levels of excitation and inhibition, the overall balance between excitation and inhibition in each cell was only changed in the contralateral mPFC projections. This finding suggests homeostatic regulation occurs within subcortically but not intracortical callosally-projecting neurons. Increased inhibition of intra-prefrontal connectivity may therefore be particularly important for prefrontal cortex circuit maturation. Finally, we observed cognitive deficits in the adult mouse using this narrowed window of thalamocortical inhibition (P20-P35).

3.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37986757

RESUMO

Axo-axonic cells (AACs), also called chandelier cells (ChCs) in the cerebral cortex, are the most distinctive type of GABAergic interneurons described in the neocortex, hippocampus, and basolateral amygdala (BLA). AACs selectively innervate glutamatergic projection neurons (PNs) at their axon initial segment (AIS), thus may exert decisive control over PN spiking and regulate PN functional ensembles. However, the brain-wide distribution, synaptic connectivity, and circuit function of AACs remains poorly understood, largely due to the lack of specific and reliable experimental tools. Here, we have established an intersectional genetic strategy that achieves specific and comprehensive targeting of AACs throughout the mouse brain based on their lineage (Nkx2.1) and molecular (Unc5b, Pthlh) markers. We discovered that AACs are deployed across essentially all the pallium-derived brain structures, including not only the dorsal pallium-derived neocortex and medial pallium-derived hippocampal formation, but also the lateral pallium-derived claustrum-insular complex, and the ventral pallium-derived extended amygdaloid complex and olfactory centers. AACs are also abundant in anterior olfactory nucleus, taenia tecta and lateral septum. AACs show characteristic variations in density across neocortical areas and layers and across subregions of the hippocampal formation. Neocortical AACs comprise multiple laminar subtypes with distinct dendritic and axonal arborization patterns. Retrograde monosynaptic tracing from AACs across neocortical, hippocampal and BLA regions reveal shared as well as distinct patterns of synaptic input. Specific and comprehensive targeting of AACs facilitates the study of their developmental genetic program and circuit function across brain structures, providing a ground truth platform for understanding the conservation and variation of a bona fide cell type across brain regions and species.

4.
Nature ; 598(7879): 182-187, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616069

RESUMO

Diverse types of glutamatergic pyramidal neurons mediate the myriad processing streams and output channels of the cerebral cortex1,2, yet all derive from neural progenitors of the embryonic dorsal telencephalon3,4. Here we establish genetic strategies and tools for dissecting and fate-mapping subpopulations of pyramidal neurons on the basis of their developmental and molecular programs. We leverage key transcription factors and effector genes to systematically target temporal patterning programs in progenitors and differentiation programs in postmitotic neurons. We generated over a dozen temporally inducible mouse Cre and Flp knock-in driver lines to enable the combinatorial targeting of major progenitor types and projection classes. Combinatorial strategies confer viral access to subsets of pyramidal neurons defined by developmental origin, marker expression, anatomical location and projection targets. These strategies establish an experimental framework for understanding the hierarchical organization and developmental trajectory of subpopulations of pyramidal neurons that assemble cortical processing networks and output channels.


Assuntos
Córtex Cerebral/citologia , Regulação da Expressão Gênica/genética , Ácido Glutâmico/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo , Animais , Linhagem da Célula/genética , Córtex Cerebral/metabolismo , Masculino , Camundongos , Células Piramidais/classificação , Fatores de Transcrição/metabolismo
5.
Neuron ; 99(2): 345-361.e4, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30017396

RESUMO

The circuitry of the striatum is characterized by two organizational plans: the division into striosome and matrix compartments, thought to mediate evaluation and action, and the direct and indirect pathways, thought to promote or suppress behavior. The developmental origins of these organizations and their developmental relationships are unknown, leaving a conceptual gap in understanding the cortico-basal ganglia system. Through genetic fate mapping, we demonstrate that striosome-matrix compartmentalization arises from a lineage program embedded in lateral ganglionic eminence radial glial progenitors mediating neurogenesis through two distinct types of intermediate progenitors (IPs). The early phase of this program produces striosomal spiny projection neurons (SPNs) through fate-restricted apical IPs (aIPSs) with limited capacity; the late phase produces matrix SPNs through fate-restricted basal IPs (bIPMs) with expanded capacity. Notably, direct and indirect pathway SPNs arise within both aIPS and bIPM pools, suggesting that striosome-matrix architecture is the fundamental organizational plan of basal ganglia circuitry.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Corpo Estriado/fisiologia , Rede Nervosa/fisiologia , Neuroglia/fisiologia , Células-Tronco/fisiologia , Animais , Corpo Estriado/química , Corpo Estriado/citologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/citologia , Neuroglia/química , Gravidez , Células-Tronco/química
6.
Cell ; 171(3): 522-539.e20, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28942923

RESUMO

Understanding the organizational logic of neural circuits requires deciphering the biological basis of neuronal diversity and identity, but there is no consensus on how neuron types should be defined. We analyzed single-cell transcriptomes of a set of anatomically and physiologically characterized cortical GABAergic neurons and conducted a computational genomic screen for transcriptional profiles that distinguish them from one another. We discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns. This architecture comprises 6 categories of ∼40 gene families, including cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release components, and transcription factors. Combinatorial expression of select members across families shapes a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties. This molecular genetic framework of neuronal identity integrates cell phenotypes along multiple axes and provides a foundation for discovering and classifying neuron types.


Assuntos
Neurônios GABAérgicos/citologia , Perfilação da Expressão Gênica , Análise de Célula Única , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Matriz Extracelular/metabolismo , Neurônios GABAérgicos/metabolismo , Camundongos , Receptores de GABA/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Transdução de Sinais , Sinapses , Transcrição Gênica , Zinco/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...