Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 335: 122294, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544404

RESUMO

Aquatic environments are often severely polluted with chemical substances of anthropogenic origin, which can pose a potential threat to aquatic organisms and human health. In this study, patterns and sources of heavy metals (HMs, 6 metals) and polycyclic aromatic hydrocarbons (PAHs, 16 hydrocarbons), contamination indicators, environmental genotoxicity measures and metrics of ecological status in lotic and lentic ecosystems were collated for the first time. Chemical analysis has confirmed previously reported long-term contamination at certain study sites. The sediments of Lake Talksa, located in a city and characterized by exclusive anthropogenic pressure, exhibited the highest levels of contamination by both HMs and PAHs. Through positive matrix factorization (PMF) analysis, vehicle and industrial emissions were identified as the primary sources of HMs and PAHs. Our results revealed that frequencies of genotoxic aberrations were higher in river sites compared to lakes, with the highest genotoxic risk observed in the Nemunas River below industrial cities Alytus and Kaunas. Surprisingly, even the severely contaminated Lake Talksa showed only a "moderate" grade of genotoxic risk, highlighting the potential for adaptation of biota to long-term contamination especially in lentic ecosystems. The ecological quality status assessed by macroinvertebrate metrics, which may be sensitive to observed high biological contamination, appeared to be unrelated to contamination patterns. Consequently, to obtain the robust information on anthropogenic contamination and its effects, a combination of various assessment methods and metrics should be employed.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Lagos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Biota , Sedimentos Geológicos/química , China , Medição de Risco
2.
Chemosphere ; 286(Pt 1): 131556, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34311403

RESUMO

In October 2019, a fire occurred in a tire-recycling facility in Alytus (Lithuania), where around 5000 t of tires had been stored. Only after 10 days was the fire completely extinguished, and the potential contamination of the surrounding environment has raised a large public concern. With an aim to assess the pollution level and pollutants distribution in the surrounding area, we conducted a study on polycyclic aromatic hydrocarbons (PAHs) and heavy metals. High concentrations of total PAHs were found inside the fire zone (315-5872 ng g-1 dw), whereas those detected in the surrounding soils were significantly lower (1.9-72 ng g-1 dw). Some areas with higher anthropogenic impact were found to contain PAH concentrations as high as 70198 ng g-1 dw. Concentrations of Cr, Zn, Ni, Cu, Pb were in the range of 1.1-93.9; 20.7-227.5; 0.2-35.7; 0.9-21.3; 0.9-102.9 µg g-1, respectively. Zn was the prevailing metal in the fire zone, elevated concentrations of Cr, Ni and Cu were also detected in this area. Principal component analysis (PCA) revealed several locations affected by the fire. The one located the closest to the fire zone was found to be highly contaminated with the heavy metals, just like the whole fire zone. Increase of the carcinogenic risk was observed in the fire zone, but no significant risk was detected in the fire-affected stations. The highest carcinogenic risk was detected in the zones with high anthropogenic loading (traffic and urban activities).


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , China , Monitoramento Ambiental , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Solo , Poluentes do Solo/análise
3.
Ecotoxicol Environ Saf ; 216: 112202, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33838460

RESUMO

The present study tested the biological consequences of exposure to a multimetal mixture as a multiple chemical stressor on Oncorhynchus mykiss at molecular, cellular, physiological and whole-organism levels and on biomarker responses of this fish during the depuration period. To represent environmentally relevant multiple chemical stressors, in our study, we used the mixture of Zn, Cu, Ni, Cr, Pb and Cd at the concentrations corresponding to Maximum-Permissible-Concentrations (MPCs) acceptable for the EU inland waters. This study was undertaken with a view to elucidate if changes in the MPC of the test mixture components (Ni, Pb, Cd) could cause significantly different biomarker responses in O. mykiss from those previously determined in the carnivorous and omnivorous fishes exposed to the mixture of the same metals but at different MPCs of Ni, Pb and Cd. This study has revealed that exposure to mixtures of metals at MPC produces genotoxic effects in fish blood erythrocytes and a lethargic effect on O. mykiss behaviour, and, also, significantly increases the levels of Cd, Cr and Ni accumulated in the gills tissue. O. mykiss successfully depurated Cr and Ni in less than 28 days, however, the level of Cd decreased by only approximately 40% over the same period. A significant capacity of O. mykiss to restore its DNA integrity (Comet assay) after exposure to metal mixtures was revealed. However, the 28-day recovery period proved to be insufficiently long for erythrocytes with nuclear abnormalities to recover to the unexposed level. In conclusion, changes in the MPCs of Ni, Pb and Cd in the test mixture produce biological effects similar to those previously determined in S. salar, R. rutilus and P. fluviatilis exposed to the mixture of the same metals but at lower MPCs of Ni and Pb and at higher MPC of Cd.

4.
Sci Total Environ ; 775: 145822, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631596

RESUMO

Pollution of the surrounding habitat poses one of the biggest threats to the coral health and even survival. This study focuses on the occurrence, distribution, bioaccumulation and bioconcentration of polybrominated diphenyl ethers (PBDEs) and phthalate esters (PAEs) in corals, their zooxanthellae and mucus, as well as in their ambient environment in Larak coral reef (Persian Gulf) for the first time. The highest concentrations of the pollutants were recorded in mucus, followed by zooxanthellae, tissue and skeleton. Soft corals with higher lipid content contained more PBDEs and PAEs. Pollutants were both efficiently bioconcentrated from water and bioaccumulated from the ambient sediment, albeit bioconcentration played the most prominent role. Elevated PBDEs and especially PAEs concentrations were detected in the skeletons of the bleached corals if compared to the skeleton samples of the non-bleached individuals.


Assuntos
Antozoários , Recifes de Corais , Animais , Ésteres , Éteres Difenil Halogenados , Oceano Índico , Irã (Geográfico) , Ácidos Ftálicos
5.
Environ Pollut ; 275: 116531, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581638

RESUMO

Swift degradation of the coral reef ecosystems urges the need to identify the reef decline drivers. Due to their widespread use, bioaccumulative and toxic characteristics, chlorinated organic compounds, such as chlorinated paraffins (CPs), are regarded as specific pollutants of concern. Yet little is known about the occurrence of CPs in the coral reef ecosystems. This study focuses on the short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs). Their distribution and congener pattern were investigated in the water-SPM-sediment system and in the corals of the Larak coral reef for the first time. Chlorinated paraffins were detected in all the coral species. Their total loadings ranged from 42.1 to 178 ng g-1 dw in coral tissue, from 6.0 to 144 ng g-1dw in the skeleton, and from 55.0 to 240 ng g-1dw in zooxanthellae. Soft corals were found to accumulate more CPs than Scleractinian corals. Zooxanthellae and mucus accumulated more CPs than tissue and skeleton. In most cases, congener group patterns were dominated by C13 (for SCCPs) and C17 (MCCPs) groups, respectively. The congener patterns of CPs altered to some extent between mucus and the remaining coral compartments. High loadings of CPs were detected in the skeleton of the bleached corals. Moreover, a significant negative correlation between the levels of CPs and the symbiodinium density was observed.


Assuntos
Antozoários , Hidrocarbonetos Clorados , Animais , China , Recifes de Corais , Ecossistema , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Oceano Índico , Irã (Geográfico) , Parafina/análise , Água
6.
Water Res ; 188: 116509, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069950

RESUMO

Effective pollution control and remediation strategies are the key to providing a major progress in conservation of coastal and marine biodiversity. For the development of such strategies, quantitative assessment of potentially toxic metals (PTMs) and the accurate identification of the pollutant sources are essential. In this study, we seek to find out spatial PTMs distribution in the coastal sediments of the Persian Gulf (Iran), to assess the potential eco-environmental risks and to identify the metal pollution sources. Total and fraction analysis indicated considerable metal (Zn, Cu, Mn, Fe, Al, Hg, Pb, Cd, As, Cr, Co, Ni and V) pollution levels, albeit in most cases PTMs were predominantly associated with the oxidizable and residual fractions. The obtained PTMs concentrations were in the range of 22.8 - 156.3, 16.6 - 161.9; 2.7 - 88; 10.4 - 107.3; 1.1 - 35.8; 0.8 - 27.9; 0.1 - 1.3; 1.1 - 21.3; 0.04 - 1.9 mg.kg-1 for V, Ni, Cu, Zn, Cr, Co, Hg, Pb, and Cd, respectively. The combined PTM-PCA-PMF modeling approach identified four main metal sources (anthropogenic, vehicle-related, agricultural and lithogenic) in the study area. Several recognizable 'hot-spots' with extremely high metal concentrations were observed in the spatial metal pollution patterns. Some of those locations were predominantly affected by the nearby industrial activities, while others have demonstrated contributions from several sources - not only anthropogenic, but also agricultural and vehicle-related. The same spots of elevated pollution were found to demonstrate higher potential eco-environmental risk. Various indexes indicated more or less similar trends: the eco-environmental risk was gradually increasing towards the northwestern part of the study area with several peaks in the central and eastern parts directly affected by the nearby industrial activities.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Oceano Índico , Irã (Geográfico) , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise , Pesos e Medidas
7.
Environ Pollut ; 267: 115476, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32891049

RESUMO

In this study, coral soft tissue, skeleton and zooxanthellae, as well as their ambient sediment and seawater were analyzed for polycyclic aromatic hydrocarbons (PAHs) with a special focus on perylene. Samples were collected from two different environments: the Kharg Island, which is affected by numerous anthropogenic stressors and Larak Island, which is mainly used for recreational and fishing activities and is characterized by dense vegetation. The heaviest loadings of PAHs were observed on Kharg Island, yet higher concentrations of perylene were detected on Larak Island and it was identified as the prevailing compound in this area. Pyrogenic perylene sources were prevailing on Kharg Island, whereas the perylene on Larak Island was determined to be of natural origin. After analyzing the biological samples, higher perylene concentrations were observed in zooxanthellae than in tissue and skeleton. The lowest and the highest perylene loadings were found in the tissue and skeleton of Platygyra daedalea and Porites lutea, respectively. This applies to both reefs. We found that perylene distribution in the corals and their ambient environment follows an irregular pattern, demonstrating remarkable effects from the local inputs. The lipid content in the coral tissue and the location of the coral colony were deduced to be the main factors affecting perylene distribution in corals. On Larak Island, a significant correlation between perylene loadings in sediment and corals was observed. On Kharg Island, a strong interaction between the water column and the corals was detected. The symbiotic relationship between the corals and zooxanthellae might play the most significant role in bioconcentration and bioaccumulation of perylene. Due to the insolubility of PAHs, they could be transferred through a food chain to zooxanthellae and eventually deposited in the coral bodies.


Assuntos
Antozoários , Perileno , Animais , Bioacumulação , Monitoramento Biológico , Recifes de Corais , Oceano Índico , Irã (Geográfico) , Ilhas
8.
J Hazard Mater ; 400: 122988, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32947728

RESUMO

Coral reefs of the Persian Gulf are vulnerable to the potentially toxic metals (PTMs) accumulated in the ambient sediments. Nonetheless, few studies have investigated the PTMs pollution and risk in the hotspot coral ecosystems of the Persian Gulf at a large-scale. Hereupon, this study focused on the PTMs contamination, their potential ecological risks, historical depositions, geochemical controls and the plausible pollution sources in the core sediments (0-40 cm) collected from the ten coral ecosystems of the Persian Gulf, Iran. Both total and fraction analysis indicated considerable metal pollution levels. Contamination was steadily decreasing towards the bottom of the sediment core, revealing the impact of a recent anthropogenic input. High metal association with the exchangeable and other mobile fractions was observed, indicating their high bioavailability. Of all the elements analyzed, toxic metals Cd, Hg and As exhibited the highest potential ecological risk (RI). Site rank index (SRI), modified degree of contamination (mCd), and contamination severity index (CSI) based approaches identified stations ST5, ST9 and ST10 as the most contaminated sites of the study area. The same stations were also found to possess considerable ecological risk. Principal component analysis (PCA) revealed that the stations located in the zone of the highest anthropogenic impact contain pollution sources for all the metals analyzed, whereas areas with low anthropogenic activity are mainly affected by the river runoff and urban emissions.

9.
Chemosphere ; 251: 126397, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32169708

RESUMO

Coral reefs are challenged by multiple stressors due to the growing industrialization. Despite that, data on their environment are still scarce, and no research is yet performed on polybrominated diphenyl ethers in the Persian Gulf area. Seeking to fill in this gap, the present study aims to determine spatio-vertical distributions, source apportionment and ecological risk of polybrominated diphenyl ethers in the sediment cores and seawater samples from ten coral reef Islands in the Persian Gulf, Iran. Σ12PBDEs concentrations ranged from 0.42 ± 0.04 to 47.14 ± 1.35 ng g-1 dw in sediments, and from 1.17 ± 0.06 to 7.21 ± 1.13 ng L-1 in seawater. The vertical polybrominated diphenyl ethers distribution varied significantly among the sampling stations and different depths with a decreasing trend towards the surface and peaks around 12-20 cm. Both in the seawater and sediment samples, elevated polybrominated diphenyl ethers loadings were observed in highly industrialized areas. Deca-bromodiphenyl ether-209 was the predominant congener along the sediment cores, whereas Tetra-bromodiphenyl ether-47 and Penta-bromodiphenyl ether-100 dominated in seawater samples. Commercial Deca-bromodiphenyl ether mixture was found to be the major source of polybrominated diphenyl ethers. Penta-bromodiphenyl ether was revealed to be the major ecological risk driver in the study area: it posed medium to high-risk quotient to sediment dwelling organisms. This study indicated that coral reefs are playing an important role in retaining polybrominated diphenyl ethers and highlighted the need to manage polybrominated diphenyl ethers contamination in the coral reef environment.


Assuntos
Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Poluentes Químicos da Água/análise , Animais , Antozoários , Recifes de Corais , Sedimentos Geológicos , Oceano Índico , Irã (Geográfico) , Ilhas , Medição de Risco , Água do Mar
10.
Environ Sci Pollut Res Int ; 27(5): 4876-4890, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31845261

RESUMO

The aim of the present study was to investigate changes in the locomotor activity of rainbow trout (Oncorhynchus mykiss) juveniles under the impact (2 h) of landfill leachate (as a multicomponent mixture) based on different endpoints such as average, maximum and angular velocities, movement duration, body mobility, and blood glucose level. Fish were exposed to five different sublethal leachate concentrations (0, 0.0625, 0.125, 0.25, and 0.5%). The locomotor activity of the leachate-exposed fish significantly decreased at 0.25 and 0.5% concentrations. Significant changes in fish behavior in response to sublethal leachate concentrations were determined during the first minutes of exposure. Angular velocity proved to be the most sensitive of all the endpoints tested. A positive correlation was observed among behavioral responses, but no correlation was established between the blood glucose level and behavioral endpoints. The blood glucose endpoint was found to be insensitive, and we suggest that it should be used only in combination with other endpoints to complement toxicity data. To enhance the understanding of rainbow trout behavioral characteristics in relation to time, and relations among behavioral endpoints of the fish under short-term exposure to a multicomponent mixture, in the current study, we investigated dynamics of the selected behavioral endpoints over time, relations among these endpoints and compared behavioral response rapidness and efficacy.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Comportamento Animal , Locomoção , Oncorhynchus mykiss/metabolismo , Poluentes Químicos da Água/química
11.
Ecotoxicol Environ Saf ; 183: 109515, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31437731

RESUMO

This study provides an insight on a long-term butyltin pressure, spatio-temporal changes and current tributyltin distribution in the Klaipeda Port sediments. Moreover, it examines whether the restrictions on tributyltin use led to a decreased pollution in the area. Changes over a 9-year period in tributyltin and its metabolites concentrations were analyzed in surface sediments from semi-enclosed bays of the Port. Reduction in organotin level was observed after tributyltin ban came into force: tributyltin concentration reached 3000 ng Sn g-1 d.w. in 2005 whereas 1793 ng Sng-1 d.w. was found to be the highest tributyltin concentration in 2013. The highest contamination was detected in the zones with ship maintenance activity. As late as in 2013, the latter areas still exhibited fresh tributyltin input while the progress of organotin degradation has been observed for other sampling stations along the Port.


Assuntos
Baías/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Água do Mar/química , Compostos de Trialquitina/análise , Poluentes Químicos da Água/análise , Lituânia , Navios
12.
Environ Monit Assess ; 191(4): 212, 2019 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-30852690

RESUMO

Curonian Lagoon is the largest lagoon in the Baltic Sea region suffering from a great anthropogenic pressure. Pollution sources within the Nemunas River basin and those within the Klaipeda Port are the main threats to this sensitive water area. For the first time, such a detailed study on 16 priority polycyclic aromatic hydrocarbon distribution, origin, and ecological risks was carried out in the Curonian Lagoon and the Nemunas River Delta. Total PAH concentration ranged from 5.6 to 528.4 ng g-1 d.w., demonstrating low to moderate pollution. The main identified PAH sources were vehicular and biomass emission, petroleum product spills, and coal combustion. A particularly high naphthalene concentration posing adverse biological effects was detected in the Nemunas River Delta region. Occasional adverse biological effects related to acenaphthene and dibenzo(a)anthracene might be observed in several Curonian Lagoon locations. The data obtained could serve for the improvement of the current regional environmental monitoring program: it reveals the need to take into account different sedimentary environments while choosing sampling locations. In addition to that, more PAHs could be included to the hazardous substance list.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Carvão Mineral/análise , Lituânia , Oceanos e Mares , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...