Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-318311

RESUMO

SARS-CoV-2 enters cells via its spike glycoprotein which must be cleaved sequentially at the S1/S2, then the S2 cleavage sites (CS) to mediate membrane fusion. SARS-CoV-2 has a unique polybasic insertion at the S1/S2 CS, which we demonstrate can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture adapted SARS-CoV-2 virus with a S1/S2 deletion, we show that the polybasic insertion is selected for in lung cells and primary human airway epithelial cultures but selected against in Vero E6, a cell line used for passaging SARS-CoV-2. We find this selective advantage depends on expression of the cell surface protease, TMPRSS2, that allows virus entry independent of endosomes thus avoiding antiviral IFITM proteins. SARS-CoV-2 virus lacking the S1/S2 furin CS was shed to lower titres from infected ferrets and was not transmitted to cohoused sentinel animals. Thus, the polybasic CS is a key determinant for efficient SARS-CoV-2 transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...