Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pediatr Blood Cancer ; 70(11): e30615, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574821

RESUMO

PURPOSE: We report the results of the French multicentric phase II study MIITOP (NCT00960739), which evaluated tandem infusions of 131 I-metaiodobenzylguanidine (mIBG) and topotecan in children with relapsed/refractory metastatic neuroblastoma (NBL). METHODS: Patients received 131 I-mIBG on day 1, with intravenous topotecan daily on days 1-5. A second activity of 131 I-mIBG was given on day 21 to deliver a whole-body radiation dose of 4 Gy, combined with a second course of topotecan on days 21-25. Peripheral blood stem cells were infused on day 31. RESULTS: Thirty patients were enrolled from November 2008 to June 2015. Median age at diagnosis was 5.5 years (2-20). Twenty-one had very high-risk NBL (VHR-NBL), that is, stage 4 NBL at diagnosis or at relapse, with insufficient response (i.e., less than a partial response of metastases and more than three mIBG spots) after induction chemotherapy; nine had progressive metastatic relapse. Median Curie score at inclusion was 6 (1-26). Median number of prior lines of treatment was 3 (1-7). Objective response rate was 13% (95% confidence interval [CI]: 4-31) for the whole population, 19% for VHR-NBL, and 0% for progressive relapses. Immediate tolerance was good, with nonhematologic toxicity limited to grade-2 nausea/vomiting in eight patients. Two-year event-free survival was 17% (95% CI: 6-32). Among the 16 patients with VHR-NBL who had not received prior myeloablative busulfan-melphalan consolidation, 13 had at least stable disease after MIITOP; 11 subsequently received busulfan-melphalan; four of them were alive (median follow-up: 7 years). CONCLUSION: MIITOP showed acceptable tolerability in this heavily pretreated population and encouraging survival rates in VHR-NBL when followed by busulfan-melphalan.


Assuntos
Neuroblastoma , Topotecan , Adolescente , Criança , Pré-Escolar , Humanos , Adulto Jovem , 3-Iodobenzilguanidina/efeitos adversos , Bussulfano/uso terapêutico , Doença Crônica , Melfalan , Recidiva Local de Neoplasia/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/radioterapia
2.
Circ Arrhythm Electrophysiol ; 15(9): e010955, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074658

RESUMO

BACKGROUND: Stereotactic body radiotherapy (SBRT) has been reported as a safe and efficient therapy for treating refractory ventricular tachycardia (VT) despite optimal medical treatment and catheter ablation. However, data on the use of SBRT in patients with electrical storm (ES) is lacking. The aim of this study was to assess the clinical outcomes associated with SBRT in the context of ES. METHODS: This retrospective study included patients who underwent SBRT in the context of ES from March 2020 to March 2021 in one tertiary center (CHU Lille). The target volume was delineated according to a predefined workflow. The efficacy was assessed with the following end points: sustained VT recurrence, VT reduced with antitachycardia pacing, and implantable cardioverter defibrillator shock. RESULTS: Seventeen patients underwent SBRT to treat refractory VT in the context of ES (mean 67±12.8 age, 59% presenting ischemic heart disease, mean left ventricular ejection fraction: 33.7± 9.7%). Five patients presented with ES related to incessant VT. Among these 5 patients, the time to effectiveness ranged from 1 to 7 weeks after SBRT. In the 12 remaining patients, VT recurrences occurred in 7 patients during the first 6 weeks following SBRT. After a median 12.5 (10.5-17.8) months follow-up, a significant reduction of the VT burden was observed beyond 6 weeks (-91% [95% CI, 78-103]), P<0.0001). The incidence of implantable cardioverter defibrillator shock and antitachycardia pacing was 36% at 1 year. CONCLUSIONS: SBRT is associated with a significant reduction of the VT burden in the event of an ES; however, prospective randomized control trials are needed. In patients without incessant VT, recurrences are observed in half of patients during the first 6 weeks. VT tolerance and implantable cardioverter defibrillator programming adjustments should be integrated as part of an action plan defined before SBRT for each patient.


Assuntos
Ablação por Cateter , Desfibriladores Implantáveis , Taquicardia Ventricular , Ablação por Cateter/efeitos adversos , Desfibriladores Implantáveis/efeitos adversos , Humanos , Estudos Prospectivos , Recidiva , Estudos Retrospectivos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/radioterapia , Taquicardia Ventricular/cirurgia , Resultado do Tratamento
3.
Front Oncol ; 9: 732, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448234

RESUMO

Purpose: This study aimed to describe our institutional experience in the use of stereotactic body radiation therapy (SBRT) for the management of adrenal gland metastases from multiple primary cancers. Materials and Methods: We retrospectively reviewed 31 patients who underwent SBRT as treatment for 33 adrenal gland lesions in the academic radiotherapy department of Oscar Lambret cancer center between May 2011 and September 2018. The primary study endpoints were 1- and 2-year local control rates, defined as the absence of progression at the treatment site based on the response evaluation criteria in solid tumors (RECIST). Toxicities were graded in accordance with the Common Terminology Criteria for Adverse Events version 4.03. Results: The average tumor volume was 33.5 cm3 (standard deviation: 51.7 cm3), and the prescribed dose ranged from 30 to 55 Gy given in 3-9 fractions. The median biological effective dose was 112.5 Gy (range: 45-115.5 Gy), assuming α/ß = 10. Considering progression at distant sites or death as competing events, the 1- and 2-year actuarial local control rates were 96.5% (95% confidence interval: 84.9-99.7) and 92.6% (95% confidence interval: 79.2-98.7), respectively. According to RECIST, a complete response was achieved in 10 (32.3%) lesions, a partial response in 10 (32.3%) lesions, and stability in 8 (25.8%) lesions. Three patients presented with local relapse at 8.8, 14, and 49.4 months. After a median follow-up of 18 months (range: 4.4-66.4), the median overall survival was 33.5 months (95% confidence interval: 17-not reached), while the median progression-free survival was 7.4 months (95% confidence interval: 3.8-14.1). Treatment-related toxicity was grade 1 or 2 in 42.4% of patients, including nausea (27.3%), abdominal pain (18.2%), vomiting (15.2%), and asthenia (9.1%). None of the patients developed acute grade ≥3 or late toxicity. Conclusion: SBRT seems to be a safe and effective treatment for adrenal gland metastases in patients whose primary tumor and metastatic spread are controlled by systemic treatment. With a 2-year local control rate of 92.6%, SBRT may be considered as one of the first-line treatments in oligometastatic patients with adrenal metastases.

4.
Phys Med ; 45 Suppl 1: S3-S4, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29413852

RESUMO

INTRODUCTION: This work describes the clinical implementation of a Monte Carlo based platform for treatment plan validation for Tomotherapy and Cyberknife, including a semi-automatic plan evaluation module based on dose constraints for organs-at-risk (OAR). METHODS: The Monte Carlo-based platform Moderato [1] is based on BEAMnrc/DOSXYZnrc and allows for automated re-calculation of doses planned with Tomotherapy and Cyberknife techniques. The Prescription/Validation module generates a set of dose constraints based on the anatomical region and fractionation scheme considered. Upon achievement of the planning, dose results are displayed with visual warnings in case of constraint violation. The system was tested on 83 patient cases in order to evaluate the influence of difference in calculation algorithms on OAR constraints. RESULTS: The first results with the Tomotherapy plans allowed for detecting and correcting a problem with the CT Hounsfield units when using a large reconstruction diameter (a CT artifact that lead to air voxels with an overestimated density). The Cyberknife results also showed some dose differences associated with different energy thresholds between Moderato and the Monte Carlo algorithm used in the Treatment Planning Station. Regarding OAR constraints, re-calculation generated few violations in thoracic, pelvic and abdominal cases. However, in spinal and head cases, significant differences can appear (-11% to +6%) on optic pathways and spinal cord, leading to doses above the limits. CONCLUSIONS: The Moderato platform constitutes a promising tool for the validation of plan quality, offering both dose re-calculation and OAR constraints evaluation. First results show the importance of this verification for some specific regions. Further work is ongoing to optimize the quantity and relevance of the information displayed, before fully introducing the system in clinical routine.

5.
Radiat Oncol ; 11: 29, 2016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-26919837

RESUMO

BACKGROUND: Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). METHODS: The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. RESULTS: Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV coverage and the sparing of the lung and heart. However, the CK may be used to reduce high doses received by the NTBTV more efficiently. CONCLUSIONS: Robotic stereotactic radiotherapy may be used for APBI to more efficiently spare the NTBTV and improve cosmetic results of APBI.


Assuntos
Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Mama/efeitos da radiação , Radiometria/métodos , Radiocirurgia/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos , Radioterapia/métodos , Robótica/métodos , Feminino , Humanos , Imageamento Tridimensional , Movimento , Imagens de Fantasmas , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Respiração , Instrumentos Cirúrgicos
6.
Med Phys ; 39(5): 2346-58, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22559605

RESUMO

PURPOSE: Yttrium-90 ((90)Y) is one of the most commonly used radionuclides in targeted radionuclide therapy (TRT). Since it decays with essentially no gamma photon emissions, surrogate radionuclides (e.g., (111)In) or imaging agents (e.g., (99m)Tc MAA) are typically used for treatment planning. It would, however, be useful to image (90)Y directly in order to confirm that the distributions measured with these other radionuclides or agents are the same as for the (90)Y labeled agents. As a result, there has been a great deal of interest in quantitative imaging of (90)Y bremsstrahlung photons using single photon emission computed tomography (SPECT) imaging. The continuous and broad energy distribution of bremsstrahlung photons, however, imposes substantial challenges on accurate quantification of the activity distribution. The aim of this work was to develop and evaluate an improved quantitative (90)Y bremsstrahlung SPECT reconstruction method appropriate for these imaging applications. METHODS: Accurate modeling of image degrading factors such as object attenuation and scatter and the collimator-detector response is essential to obtain quantitatively accurate images. All of the image degrading factors are energy dependent. Thus, the authors separated the modeling of the bremsstrahlung photons into multiple categories and energy ranges. To improve the accuracy, the authors used a bremsstrahlung energy spectrum previously estimated from experimental measurements and incorporated a model of the distance between (90)Y decay location and bremsstrahlung emission location into the SIMIND code used to generate the response functions and kernels used in the model. This improved Monte Carlo bremsstrahlung simulation was validated by comparison to experimentally measured projection data of a (90)Y line source. The authors validated the accuracy of the forward projection model for photons in the various categories and energy ranges using the validated Monte Carlo (MC) simulation method. The forward projection model was incorporated into an iterative ordered subsets-expectation maximization (OS-EM) reconstruction code to allow for quantitative SPECT reconstruction. The resulting code was validated using both a physical phantom experiment with spherical objects in a warm background and a realistic anatomical phantom simulation. In the physical phantom study, the authors evaluated the method in terms of quantitative accuracy of activity estimates in the spheres; in the simulation study, the authors evaluated the accuracy and precision of activity estimates from various organs and compared them to results from a previously proposed method. RESULTS: The authors demonstrated excellent agreement between the experimental measurement and Monte Carlo simulation. In the XCAT phantom simulation, the proposed method achieved much better accuracy in the modeling (error in photon counts was -1.1 %) compared to a previously proposed method (errors were more than 20 %); the quantitative accuracy of activity estimates was excellent for all organs (errors were from -1.6 % to 11.9 %) and comparable to previously published results for (131)I using the same collimator. CONCLUSIONS: The proposed (90)Y bremsstrahlung SPECT reconstruction method provided very accurate estimates of organ activities, with accuracies approaching those previously observed for (131)I. The method may be useful in verifying organ doses for targeted radionuclide therapy using (90)Y.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único/métodos , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Radiometria , Reprodutibilidade dos Testes , Espalhamento de Radiação , Radioisótopos de Ítrio
7.
Med Phys ; 37(6): 2943-50, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20632606

RESUMO

PURPOSE: Multiple investigators have recently reported the use of yttrium-90 (90Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging for the dosimetry of targeted radionuclide therapies. Because Monte Carlo (MC) simulations are useful for studying SPECT imaging, this study investigates the MC simulation of 90Y bremsstrahlung photons in SPECT. To overcome the computationally expensive simulation of electrons, the authors propose a fast way to simulate the emission of 90Y bremsstrahlung photons based on prerecorded bremsstrahlung photon probability density functions (PDFs). METHODS: The accuracy of bremsstrahlung photon simulation is evaluated in two steps. First, the validity of the fast bremsstrahlung photon generator is checked. To that end, fast and analog simulations of photons emitted from a 90Y point source in a water phantom are compared. The same setup is then used to verify the accuracy of the bremsstrahlung photon simulations, comparing the results obtained with PDFs generated from both simulated and measured data to measurements. In both cases, the energy spectra and point spread functions of the photons detected in a scintillation camera are used. RESULTS: Results show that the fast simulation method is responsible for a 5% overestimation of the low-energy fluence (below 75 keV) of the bremsstrahlung photons detected using a scintillation camera. The spatial distribution of the detected photons is, however, accurately reproduced with the fast method and a computational acceleration of approximately 17-fold is achieved. When measured PDFs are used in the simulations, the simulated energy spectrum of photons emitted from a point source of 90Y in a water phantom and detected in a scintillation camera closely approximates the measured spectrum. The PSF of the photons imaged in the 50-300 keV energy window is also accurately estimated with a 12.4% underestimation of the full width at half maximum and 4.5% underestimation of the full width at tenth maximum. CONCLUSIONS: Despite its limited accuracy, the fast bremsstrahlung photon generator is well suited for the simulation of bremsstrahlung photons emitted in large homogeneous organs, such as the liver, and detected in a scintillation camera. The computational acceleration makes it very useful for future investigations of 90Y bremsstrahlung SPECT imaging.


Assuntos
Modelos Químicos , Radiometria/métodos , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Radioisótopos de Ítrio/análise , Radioisótopos de Ítrio/química , Simulação por Computador , Interpretação de Imagem Assistida por Computador/métodos , Fótons , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Med Phys ; 36(4): 1053-60, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19472610

RESUMO

The GEANT4 application for tomographic emission (GATE) is one of the most detailed Monte Carlo simulation tools for SPECT and PET. It allows for realistic phantoms, complex decay schemes, and a large variety of detector geometries. However, only a fraction of the information in each particle history is available for postprocessing. In order to extend the analysis capabilities of GATE, a flexible framework was developed. This framework allows all detected events to be subdivided according to their type: In PET, true coincidences from others, and in SPECT, geometrically collimated photons from others. The framework of the authors can be applied to any isotope, phantom, and detector geometry available in GATE. It is designed to enhance the usability of GATE for the study of contamination and for the investigation of the properties of current and future prototype detectors. The authors apply the framework to a case study of Bexxar, first assuming labeling with 124I, then with 131I. It is shown that with 124I PET, results with an optimized window improve upon those with the standard window but achieve less than half of the ideal improvement. Nevertheless, 124I PET shows improved resolution compared to 131I SPECT with triple-energy-window scatter correction.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Simulação por Computador , Humanos , Radioisótopos do Iodo/química , Rim/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Física/métodos , Tomografia por Emissão de Pósitrons/instrumentação , Radioisótopos/química , Radiometria/métodos , Espalhamento de Radiação , Software , Tórax/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação
9.
Cancer Biother Radiopharm ; 22(3): 423-30, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17651050

RESUMO

I-131 is a frequently used isotope for radionuclide therapy. This technique for cancer treatment requires a pre-therapeutic dosimetric study. The latter is usually performed (for this radionuclide) by directly imaging the uptake of the therapeutic radionuclide in the body or by replacing it by one of its isotopes, which are more suitable for imaging. This study aimed to compare the image quality that can be achieved by three iodine isotopes: I-131 and I-123 for single-photon emission computed tomography imaging, and I-124 for positron emission tomography imaging. The imaging characteristics of each isotope were investigated by simulated data. Their spectrums, point-spread functions, and contrast-recovery curves were drawn and compared. I-131 was imaged with a high-energy all-purpose (HEAP) collimator, whereas two collimators were compared for I-123: low-energy high-resolution (LEHR) and medium energy (ME). No mechanical collimation was used for I-124. The influence of small high-energy peaks (>0.1%) on the main energy window contamination were evaluated. Furthermore, the effect of a scattering medium was investigated and the triple energy window (TEW) correction was used for spectral-based scatter correction. Results showed that I-123 gave the best results with a LEHR collimator when the scatter correction was applied. Without correction, the ME collimator reduced the effects of high-energy contamination. I-131 offered the worst results. This can be explained by the large amount of septal penetration from the photopeak and by the collimator, which gave a low spatial resolution. I-124 gave the best imaging properties owing to its electronic collimation (high sensitivity) and a short coincidence time window.


Assuntos
Radioisótopos do Iodo , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Radioisótopos do Iodo/classificação , Peso Molecular , Imagens de Fantasmas , Sensibilidade e Especificidade , Tomografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...