Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: 12443, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27503795

RESUMO

Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10(-17) via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10(-17) is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.

2.
Opt Express ; 22(22): 26537-47, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401805

RESUMO

In long-distance, optical continuous-wave frequency transfer via fiber, remote bidirectional Er³ ⁺ -doped fiber amplifiers are commonly used to mitigate signal attenuation. We demonstrate for the first time the ultrastable transfer of an optical frequency using a remote fiber Brillouin amplifier, placed in a server room along the link. Using it as the only means of remote amplification, on a 660 km loop of installed underground fiber we bridge distances of 250 km and 160 km between amplifications. Over several days of uninterrupted measurement, we find an instability of the frequency transfer (Allan deviation of Λ-weighted data with 1 s gate time) of around 1 × 10(-19) and less for averaging times longer than 3000 s. The modified Allan deviation reaches 3 × 10(-19) at an averaging time of 100 s. Beyond 100 s it follows the interferometer noise floor, and for averaging times longer than 1000 s the modified Allan deviation is in the 10(-20) range. A conservative value of the overall accuracy is 1 × 10(-19)

3.
Science ; 336(6080): 441-4, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22539714

RESUMO

Optical clocks show unprecedented accuracy, surpassing that of previously available clock systems by more than one order of magnitude. Precise intercomparisons will enable a variety of experiments, including tests of fundamental quantum physics and cosmology and applications in geodesy and navigation. Well-established, satellite-based techniques for microwave dissemination are not adequate to compare optical clocks. Here, we present phase-stabilized distribution of an optical frequency over 920 kilometers of telecommunication fiber. We used two antiparallel fiber links to determine their fractional frequency instability (modified Allan deviation) to 5 × 10(-15) in a 1-second integration time, reaching 10(-18) in less than 1000 seconds. For long integration times τ, the deviation from the expected frequency value has been constrained to within 4 × 10(-19). The link may serve as part of a Europe-wide optical frequency dissemination network.

4.
Phys Rev Lett ; 94(18): 180401, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15904346

RESUMO

The dynamics of pair condensate formation in a strongly interacting Fermi gas close to a Feshbach resonance was studied. We employed a phase-shift method in which the delayed response of the many-body system to a modulation of the interaction strength was recorded. The observable was the fraction of condensed molecules in the cloud after a rapid magnetic field ramp across the Feshbach resonance. The measured response time was slow compared to the rapid ramp, which provides final proof that the molecular condensates reflect the presence of fermion pair condensates before the ramp.

5.
Phys Rev Lett ; 93(14): 143001, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15524788

RESUMO

We have observed three Feshbach resonances in collisions between 6Li and 23Na atoms. The resonances were identified as narrow loss features when the magnetic field was varied. The molecular states causing these resonances have been identified, and additional 6Li-23Na resonances are predicted. These resonances will allow the study of degenerate Bose-Fermi mixtures with adjustable interactions and could be used to generate ultracold heteronuclear molecules.

6.
Phys Rev Lett ; 92(12): 120403, 2004 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-15089655

RESUMO

We have observed Bose-Einstein condensation of pairs of fermionic atoms in an ultracold 6Li gas at magnetic fields above a Feshbach resonance, where no stable 6Li2 molecules would exist in vacuum. We accurately determined the position of the resonance to be 822+/-3 G. Molecular Bose-Einstein condensates were detected after a fast magnetic field ramp, which transferred pairs of atoms at close distances into bound molecules. Condensate fractions as high as 80% were obtained. The large condensate fractions are interpreted in terms of preexisting molecules which are quasistable even above the two-body Feshbach resonance due to the presence of the degenerate Fermi gas.

7.
Phys Rev Lett ; 91(25): 250401, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14754098

RESUMO

We have observed Bose-Einstein condensation of molecules. When a spin mixture of fermionic 6Li atoms was evaporatively cooled in an optical dipole trap near a Feshbach resonance, the atomic gas was converted into 6Li2 molecules. Below 600 nK, a Bose-Einstein condensate of up to 900 000 molecules was identified by the sudden onset of a bimodal density distribution. This condensate realizes the limit of tightly bound fermion pairs in the crossover between BCS superfluidity and Bose-Einstein condensation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...