Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 457(5): 1079-91, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18758809

RESUMO

We investigated the role of the Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) on intestinal salt and water absorption, brush border membrane (BBM) morphology, and on the NHE3 mRNA expression, protein abundance, and transport activity in the murine intestine. NHERF1-deficient mice displayed reduced jejunal fluid absorption in vivo, as well as an attenuated in vitro Na(+) absorption in isolated jejunal and colonic, but not of ileal, mucosa. However, cAMP-mediated inhibition of both parameters remained intact. Acid-activated NHE3 transport rate was reduced in surface colonocytes, while its inhibition by cAMP and cGMP was normal. Immunodetection of NHE3 revealed normal NHE3 localization in the BBM of NHERF1 null mice, but NHE3 abundance, as measured by Western blot, was significantly reduced in isolated BBM from the small and large intestines. Furthermore, the microvilli in the proximal colon, but not in the small intestine, were significantly shorter in NHERF1 null mice. Additional knockout of PDZK1 (NHERF3), another member of the NHERF family of adaptor proteins, which binds to both NHE3 and NHERF1, further reduced basal NHE3 activity and caused complete loss of cAMP-mediated NHE3 inhibition. An activator of the exchange protein activated by cAMP (EPAC) had no effect on jejunal fluid absorption in vivo, but slightly inhibited NHE3 activity in surface colonocytes in vitro. In conclusion, NHERF1 has segment-specific effects on intestinal salt absorption, NHE3 transport rates, and NHE3 membrane abundance without affecting mRNA levels. However, unlike PDZK1, NHERF1 is not required for NHE3 regulation by cyclic nucleotides.


Assuntos
Colo/metabolismo , Absorção Intestinal/fisiologia , Jejuno/metabolismo , Fosfoproteínas/deficiência , Cloreto de Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Camundongos , Microvilosidades/ultraestrutura , Trocador 3 de Sódio-Hidrogênio
2.
Acta Physiol (Oxf) ; 193(4): 357-65, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18363901

RESUMO

BACKGROUND AND AIMS: We investigated the role of the recently discovered, villous-expressed anion exchanger Slc26a6 (PAT1) and the predominantly crypt-expressed cystic fibrosis transmembrane regulator (CFTR) in basal and acid-stimulated murine duodenal HCO(3)(-) secretion in vivo, and the influence of blood HCO(3)(-) concentration on both. METHODS: The proximal duodenum of anaesthetized mice was perfused in situ, and HCO(3)(-) secretion was determined by back-titration. Duodenal mucosal permeability was assessed by determining (51)Cr-EDTA leakage from blood to lumen. RESULTS: Compared with wild type (WT) littermates basal duodenal HCO(3)(-) secretory rates were slightly reduced in Slc26-deficient mice at low ( approximately 21 mm), and markedly reduced at high blood HCO(3)(-) concentration ( approximately 29 mm). In contrast, basal HCO(3)(-) secretion was markedly reduced in CFTR-deficient mice compared with WT littermates both at high and low blood HCO(3)(-) concentration. A short-term application of luminal acid increased duodenal HCO(3)(-) secretory rate in Slc26a6-deficient and WT mice to the same degree, but had no stimulatory effect in the absence of CFTR. Luminal acidification to pH 2.5 did not alter duodenal permeability. CONCLUSIONS: The involvement of Slc26a6 in basal HCO(3)(-) secretion in murine duodenum in vivo is critically dependent on the systemic acid/base status, and this transporter is not involved in acid-stimulated HCO(3)(-) secretion. The presence of CFTR is essential for basal and acid-induced HCO(3)(-) secretion irrespective of acid/base status. This suggests a coupled action of Slc26a6 with CFTR for murine basal duodenal HCO(3)(-) secretion, but not acid-stimulated secretion, in vivo.


Assuntos
Bicarbonatos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Duodeno/metabolismo , Mucosa Intestinal/metabolismo , Animais , Antiporters/deficiência , Antiporters/fisiologia , Bicarbonatos/sangue , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Concentração de Íons de Hidrogênio , Absorção Intestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Permeabilidade , Transportadores de Sulfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...