Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 42(12): 2383-2400, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867476

RESUMO

Red oaks (Quercus sect. Lobatae) are a taxonomic group of hardwood trees, which occur in swamp forests, subtropical chaparral and savannahs from Columbia to Canada. They cover a wide range of ecological niches, and many species are thought to be able to cope with current trends in climate change. Genus Quercus encompasses ca. 500 species, of which ca. 80 make up sect. Lobatae. Species diversity is greatest within the southeastern USA and within the northern and eastern regions of Mexico. This review discusses the weak reproductive barriers between species of red oaks and the effects this has on speciation and niche range. Distribution and diversity have been shaped by drought adaptations common to the species of sect. Lobatae, which enable them to fill various xeric niches across the continent. Drought adaptive traits of this taxonomic group include deciduousness, deep tap roots, ring-porous xylem, regenerative stump sprouting, greater leaf thickness and smaller stomata. The complex interplay between these anatomical and morphological traits has given red oaks features of drought tolerance and avoidance. Here, we discuss physiological and genetic components of these adaptations to address how many species of sect. Lobatae reside within xeric sites and/or sustain normal metabolic function during drought. Although extensive drought adaptation appears to give sect. Lobatae a resilience to climate change, aging tree stands, oak life history traits and the current genetic structures place many red oak species at risk. Furthermore, oak decline, a complex interaction between abiotic and biotic agents, has severe effects on red oaks and is likely to accelerate species decline and fragmentation. We suggest that assisted migration can be used to avoid species fragmentation and increase climate change resilience of sect. Lobatae.


Assuntos
Quercus , Quercus/fisiologia , Árvores/fisiologia , Secas , Xilema , Florestas
2.
Plant Biotechnol J ; 18(6): 1434-1443, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31799778

RESUMO

We investigated feasibility of the Full-length complementary DNA OvereXpression (FOX) system as a mutagenesis approach in poplar, using developing xylem tissue. The main goal was to assess the overall mutation rate and if the system will increase instances of mutants affected in traits linked to the xylem tissue. Indeed, we found a high mutation rate of 17.7%, whereas 80% of all mutants were significantly affected in cellulose, lignin and/or hemicellulose. Cell wall biosynthesis is a major process occurring during xylem development. Enrichment of mutants affected in cell wall composition suggests that the tissue source for the FOX library influenced the occurrence of mutants affected in a trait linked to this tissue. Additionally, we found that FLcDNAs from mutants affected in cell wall composition were homologous to genes known to be involved in cell wall biosynthesis and most recovered FLcDNAs corresponded to genes whose native expression was highest in xylem. We characterized in detail a mutant line with increased diameter. The phenotype was caused by a poplar homolog of LONELY GUY 1 (LOG1), which encodes an enzyme in cytokinin biosynthesis and significantly increased xylem proliferation. The causative role of LOG1 in the observed phenotype was further reaffirmed by elevated cytokinin concentration in the mutant and recapitulation overexpression experiment wherein multiple independent lines phenocopied the original FOX mutant. Our experiments show that the FOX approach can be efficiently used for gene discovery and molecular interrogation of traits specific to woody perennial growth and development.


Assuntos
Populus , Madeira , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Biblioteca Gênica , Lignina/metabolismo , Taxa de Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Madeira/genética , Madeira/metabolismo , Xilema/genética , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...