Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(7): 4690-4701, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38952293

RESUMO

Dopamine, alongside norepinephrine and epinephrine, belongs to the catecholamine group, widely distributed across both plant and animal kingdoms. In mammals, these compounds serve as neurotransmitters with roles in glycogen mobilization. In plants, their synthesis is modulated in response to stress conditions aiding plant survival by emitting these chemicals, especially dopamine that relieves their resilience against stress caused by both abiotic and biotic factors. In present studies, there is a lack of robust methods to monitor the operations of dopamine under stress conditions or any adverse situations across the plant's developmental stages from cell to cell. In our study, we have introduced a groundbreaking approach to track dopamine generation and activity in various metabolic pathways by using the simple nitrogen and sulfur co-doped carbon quantum dots (N, S-CQDs). These CQDs exhibit dominant biocompatibility, negligible toxicity, and environmentally friendly characteristics using a quenching process for fluorometric dopamine detection. This innovative nanomarker can detect even small amounts of dopamine within plant cells, providing insights into plant responses to strain and anxiety. Confocal microscopy has been used to corroborate this occurrence and to provide visual proof of the process of binding dopamine with these N, S-CQDs inside the cells.


Assuntos
Dopamina , Pontos Quânticos , Dopamina/metabolismo , Pontos Quânticos/química , Tamanho da Partícula , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Plantas/metabolismo , Plantas/química , Carbono/química
2.
Sci Rep ; 13(1): 21899, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081993

RESUMO

Methotrexate (MTX), an efficient chemotherapy medication is used in treating various malignancies. However, the breast cancer cell line MDA-MB-231 has developed resistance to it due to low levels of the MTX transport protein, and reduced folate carrier (RFC), making it less effective against these cancer cells. Here we designed a very simple, biocompatible, and non-toxic amine-capped ZnO quantum dots to overcome the MTX resistance on the MDA-MB-231 breast cancer cell line. The QD was characterized by HRTEM, DLS EDX, FT-IR, UV-Vis, and Fluorescence spectroscopy. MTX loading onto the QD was confirmed through fluorescence and UV-Vis spectroscopy. Additionally, extensive confocal microscopic investigations were carried out to determine whether the MTX was successfully released on the MDA-MB-231 cell line. It was discovered that QD is a better pH-responsive delivery system than the previous ones because it successfully delivers MTX to the MDA-MB-231 at a higher rate on an acidic pH than it does at a physiological pH. QD also has anticancer activity and can eradicate cancer cells on its own. These factors make the QD to be an effective pH-responsive delivery system that can improve the efficacy of the medication in therapeutic diagnosis.


Assuntos
Neoplasias da Mama , Óxido de Zinco , Humanos , Feminino , Metotrexato , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Óxido de Zinco/farmacologia , Células MDA-MB-231 , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
3.
Front Biosci (Landmark Ed) ; 28(12): 364, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38179763

RESUMO

Hemophilia, cancer, diabetes, cardiovascular disease, mental health issues, immunological deficiencies, neuromuscular disease, blindness, and other ailments can all be treated with gene silencing and gene therapy, a growing discipline in medicine. It typically refers to a range of therapeutic techniques in which a patient's body's particular cells are given genetic material designed to correct and erase genetic flaws. The advancements in genetics and bioengineering have paved the way for the conceptualization of gene therapy through the manipulation of vectors, enabling the targeted transfer of extrachromosomal material to specific cells. One of the main focus areas of this methodology is the escalation of delivery vehicles (vectors), primarily plasmids or viruses; it still has difficulties because there is no good delivery mechanism that can precisely deliver stable small interfering Ribonucleic Acid (siRNA) or DNA to the target tissue location. As they are non-fluorescent, the siRNA or DNA delivery procedure is unable to be monitored by these carriers. In the context of quantum dots (QDs), the formation of QD-siRNA or QD/DNA complexes facilitated the real-time monitoring and precise localization of QDs during the silencing, delivery, and transfection processes. The unique dual-modality optical and fluorescent properties exhibited by quantum dots contribute to their utility as versatile imaging probes. The research studies discussed in this review article will provide a framework for designing efficient QD-based nanocarriers that can successfully carry therapeutic genetic tools into targeted cells. As a result of their findings, the researchers developed some unique QDs that successfully attached to the siRNA or DNA and carried it to the desired place. The use of these QD-based delivery devices could enhance the field of gene silencing and gene delivery.


Assuntos
Pontos Quânticos , Humanos , Inativação Gênica , RNA Interferente Pequeno/genética , Terapia Genética , DNA
4.
Sci Rep ; 12(1): 19366, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371411

RESUMO

Dichloroacetic acid (DCA), an organohalide that present in environmental sample and biological systems, got high attention for its therapeutic potential as the inhibitor of pyruvate dehydrogenase kinase (PDK), elevated in obesity, diabetes, heart disease and cancer. Herein, we developed a Cobalt conjugated carbon quantum dots (N-CQDs/Co) that selectively detect DCA by fluorescence "turn-on" mechanism. Utilizing TEM, DLS, UV-vis and fluorescence spectroscopy, the mechanism has been thoroughly elucidated and is attributed to disaggregation induced enhancement (DIE). The limit of detection of the N-CQDs/Co complex is 8.7 µM. The structural characteristics and size of the N-CQDs and N-CQDS/Co complex have been verified using FT-IR, XPS, HRTEM, DLS, EDX have been performed. Additionally, the complex is used to specifically find DCA in the human cell line and in zebrafish.Journal instruction requires a city for affiliations; however, these are missing in affiliation [4]. Please verify if the provided city is correct and amend if necessary.Kharagpur is the city. The address is okay.


Assuntos
Pontos Quânticos , Animais , Humanos , Pontos Quânticos/química , Carbono/química , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ácido Dicloroacético/farmacologia , Cobalto , Peixe-Zebra , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...