Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 57(3): 978-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20723610

RESUMO

The phylogenetic relationships between the five dioecious species in Silene section Melandrium (Caryophyllaceae) and their putative hermaphrodite relatives are investigated based on an extensive geographic and taxonomic sample, using DNA sequence data from the chloroplast genome and the nuclear ribosomal ITS region. The hermaphrodite S. noctiflora (the type species of section Elisanthe) is distantly related to the dioecious species. With the exception of chloroplast sequences in one S. latifolia population from Turkey, the dioecious taxa form a strongly supported monophyletic group (Silene section Melandrium). The phylogenetic structure within section Melandrium differs between chloroplast and nuclear sequences. While there is extensive sharing of chloroplast haplotypes among all the dioecious species (the observed patterns reflect geographic structure), the nuclear ITS phylogeny shows a higher degree of taxonomic structure. Chloroplast-sharing by the section Melandrium species is most plausibly explained by a history of hybridization and extensive backcrossing.


Assuntos
DNA de Cloroplastos/genética , Filogenia , Silene/classificação , Núcleo Celular/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Evolução Molecular , Geografia , Modelos Genéticos , Alinhamento de Sequência , Análise de Sequência de DNA , Silene/genética
2.
BMC Evol Biol ; 9: 260, 2009 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-19878576

RESUMO

BACKGROUND: Recent phylogenetic studies have revealed that the mitochondrial genome of the angiosperm Silene noctiflora (Caryophyllaceae) has experienced a massive mutation-driven acceleration in substitution rate, placing it among the fastest evolving eukaryotic genomes ever identified. To date, it appears that other species within Silene have maintained more typical substitution rates, suggesting that the acceleration in S. noctiflora is a recent and isolated evolutionary event. This assessment, however, is based on a very limited sampling of taxa within this diverse genus. RESULTS: We analyzed the substitution rates in 4 mitochondrial genes (atp1, atp9, cox3 and nad9) across a broad sample of 74 species within Silene and related genera in the tribe Sileneae. We found that S. noctiflora shares its history of elevated mitochondrial substitution rate with the closely related species S. turkestanica. Another section of the genus (Conoimorpha) has experienced an acceleration of comparable magnitude. The phylogenetic data remain ambiguous as to whether the accelerations in these two clades represent independent evolutionary events or a single ancestral change. Rate variation among genes was equally dramatic. Most of the genus exhibited elevated rates for atp9 such that the average tree-wide substitution rate for this gene approached the values for the fastest evolving branches in the other three genes. In addition, some species exhibited major accelerations in atp1 and/or cox3 with no correlated change in other genes. Rates of non-synonymous substitution did not increase proportionally with synonymous rates but instead remained low and relatively invariant. CONCLUSION: The patterns of phylogenetic divergence within Sileneae suggest enormous variability in plant mitochondrial mutation rates and reveal a complex interaction of gene and species effects. The variation in rates across genomic and phylogenetic scales raises questions about the mechanisms responsible for the evolution of mutation rates in plant mitochondrial genomes.


Assuntos
DNA Mitocondrial/genética , Magnoliopsida/genética , Mutação , Filogenia , DNA de Cloroplastos/genética , Genoma de Planta , Magnoliopsida/classificação , Mitocôndrias/genética
3.
BMC Evol Biol ; 8: 299, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18973668

RESUMO

BACKGROUND: Increasing evidence from DNA sequence data has revealed that phylogenies based on different genes may drastically differ from each other. This may be due to either inter- or intralineage processes, or to methodological or stochastic errors. Here we investigate a spectacular case where two parts of the same gene (SlX1/Y1) show conflicting phylogenies within Silene (Caryophyllaceae). SlX1 and SlY1 are sex-linked genes on the sex chromosomes of dioecious members of Silene sect. Elisanthe. RESULTS: We sequenced the homologues of the SlX1/Y1 genes in several Sileneae species. We demonstrate that different parts of the SlX1/Y1 region give different phylogenetic signals. The major discrepancy is that Silene vulgaris and S. sect. Conoimorpha (S. conica and relatives) exchange positions. To determine whether gene duplication followed by recombination (an intralineage process) may explain the phylogenetic conflict in the Silene SlX1/Y1 gene, we use a novel probabilistic, multiple primer-pair PCR approach. We did not find any evidence supporting gene duplication/loss as explanation to the phylogenetic conflict. CONCLUSION: The phylogenetic conflict in the Silene SlX1/Y1 gene cannot be explained by paralogy or artefacts, such as in vitro recombination during PCR. The support for the conflict is strong enough to exclude methodological or stochastic errors as likely sources. Instead, the phylogenetic incongruence may have been caused by recombination of two divergent alleles following ancient interspecific hybridization or incomplete lineage sorting. These events probably took place several million years ago. This example clearly demonstrates that different parts of the genome may have different evolutionary histories and stresses the importance of using multiple genes in reconstruction of taxonomic relationships.


Assuntos
Filogenia , Proteínas de Plantas/genética , Silene/classificação , Silene/genética , Cromossomos de Plantas/genética , Duplicação Gênica , Dados de Sequência Molecular , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...