Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542714

RESUMO

Obesity is a risk factor for many diseases, such as type 2 diabetes and cardiovascular diseases. In line with the need for precision medicine, the search for biomarkers reporting the progression of obesity- and diet-associated disorders is urgent. We used NMR to determine the metabolomics profile of key organs (lung, liver, heart, skeletal muscle, kidney, and brain) and serum from male C57Bl/6J mice (5 weeks old) fed for 6, 10, and 14 weeks on a high-fat and high-sucrose diet (HFHSD) vs. a standard diet (STD). We determined metabolite concentrations in the organs at each time point, which allowed us to discriminate age- and diet-related effects as well as the interactions between both, highlighting the need to evaluate the influence of age as a confounding factor on metabolic signatures. Notably, the analysis revealed the influence of time on metabolite concentrations in the STD condition, probably reflecting the juvenile-to-adult transition. Variations impacted the liver and lung metabolites, revealing the strong influence of the HFHS diet on normal metabolism maturation during youth.


Assuntos
Diabetes Mellitus Tipo 2 , Sacarose , Camundongos , Masculino , Animais , Sacarose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Estudos Transversais , Obesidade/metabolismo , Metabolômica , Fígado/metabolismo , Camundongos Endogâmicos C57BL
2.
Nutrients ; 15(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38004183

RESUMO

Progressive decline in pancreatic beta-cell function is central to the pathogenesis of type 2 diabetes (T2D). Here, we explore the relationship between the beta cell and its nutritional environment, asking how an excess of energy substrate leads to altered energy production and subsequent insulin secretion. Alterations in intracellular metabolic homeostasis are key markers of islets with T2D, but changes in cellular metabolite exchanges with their environment remain unknown. We answered this question using nuclear magnetic resonance-based quantitative metabolomics and evaluated the consumption or secretion of 31 extracellular metabolites from healthy and T2D human islets. Islets were also cultured under high levels of glucose and/or palmitate to induce gluco-, lipo-, and glucolipotoxicity. Biochemical analyses revealed drastic alterations in the pyruvate and citrate pathways, which appear to be associated with mitochondrial oxoglutarate dehydrogenase (OGDH) downregulation. We repeated these manipulations on the rat insulinoma-derived beta-pancreatic cell line (INS-1E). Our results highlight an OGDH downregulation with a clear effect on the pyruvate and citrate pathways. However, citrate is directed to lipogenesis in the INS-1E cells instead of being secreted as in human islets. Our results demonstrate the ability of metabolomic approaches performed on culture media to easily discriminate T2D from healthy and functional islets.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Ratos , Animais , Humanos , Ácido Pirúvico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácido Cítrico/farmacologia , Ácido Cítrico/metabolismo , Células Secretoras de Insulina/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Insulina/metabolismo
3.
Sci Rep ; 13(1): 17733, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853114

RESUMO

Lactate accumulation and acidification in tumours are a cancer hallmark associated with the Warburg effect. Lactic acidosis correlates with cancer malignancy, and the benefit it offers to tumours has been the subject of numerous hypotheses. Strikingly, lactic acidosis enhances cancer cell survival to environmental glucose depletion by repressing high-rate glycolysis and lactic fermentation, and promoting an oxidative metabolism involving reactivated respiration. We used real-time NMR to evaluate how cytosolic lactate accumulation up to 40 mM and acidification up to pH 6.5 individually impact glucose consumption, lactate production and pyruvate evolution in isolated cytosols. We used a reductive cell-free system (CFS) to specifically study cytosolic metabolism independently of other Warburg-regulatory mechanisms found in the cell. We assessed the impact of lactate and acidification on the Warburg metabolism of cancer cytosols, and whether this effect extended to different cytosolic phenotypes of lactic fermentation and cancer. We observed that moderate acidification, independently of lactate concentration, drastically reduces the glucose consumption rate and halts lactate production in different lactic fermentation phenotypes. In parallel, for Warburg-type CFS lactate supplementation induces pyruvate accumulation at control pH, and can maintain a higher cytosolic pyruvate pool at low pH. Altogether, we demonstrate that intracellular acidification accounts for the direct repression of lactic fermentation by the Warburg-associated lactic acidosis.


Assuntos
Acidose Láctica , Neoplasias , Humanos , Ácido Láctico/metabolismo , Acidose Láctica/metabolismo , Fermentação , Sistema Livre de Células/metabolismo , Glicólise , Neoplasias/patologia , Piruvatos/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio
4.
Cancers (Basel) ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36900208

RESUMO

Lactic acidosis, a hallmark of solid tumour microenvironment, originates from lactate hyperproduction and its co-secretion with protons by cancer cells displaying the Warburg effect. Long considered a side effect of cancer metabolism, lactic acidosis is now known to play a major role in tumour physiology, aggressiveness and treatment efficiency. Growing evidence shows that it promotes cancer cell resistance to glucose deprivation, a common feature of tumours. Here we review the current understanding of how extracellular lactate and acidosis, acting as a combination of enzymatic inhibitors, signal, and nutrient, switch cancer cell metabolism from the Warburg effect to an oxidative metabolic phenotype, which allows cancer cells to withstand glucose deprivation, and makes lactic acidosis a promising anticancer target. We also discuss how the evidence about lactic acidosis' effect could be integrated in the understanding of the whole-tumour metabolism and what perspectives it opens up for future research.

5.
J Adv Res ; 43: 163-174, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585106

RESUMO

INTRODUCTION: Although the physiological role of the C-terminal hydrolase domain of the soluble epoxide hydrolase (sEH-H) is well investigated, the function of its N-terminal phosphatase activity (sEH-P) remains unknown. OBJECTIVES: This study aimed to assess in vivo the physiological role of sEH-P. METHODS: CRISPR/Cas9 was used to generate a novel knock-in (KI) rat line lacking the sEH-P activity. RESULTS: The sEH-P KI rats has a decreased metabolism of lysophosphatidic acids to monoacyglycerols. KI rats grew almost normally but with less weight and fat mass gain while insulin sensitivity was increased compared to wild-type rats. This lean phenotype was more marked in males than in female KI rats and mainly due to decreased food consumption and enhanced energy expenditure. In fact, sEH-P KI rats had an increased lipolysis allowing to supply fatty acids as fuel to potentiate brown adipose thermogenesis under resting condition and upon cold exposure. The potentiation of thermogenesis was abolished when blocking PPARγ, a nuclear receptor activated by intracellular lysophosphatidic acids, but also when inhibiting simultaneously sEH-H, showing a functional interaction between the two domains. Furthermore, sEH-P KI rats fed a high-fat diet did not gain as much weight as the wild-type rats, did not have increased fat mass and did not develop insulin resistance or hepatic steatosis. In addition, sEH-P KI rats exhibited enhanced basal cardiac mitochondrial activity associated with an enhanced left ventricular contractility and were protected against cardiac ischemia-reperfusion injury. CONCLUSION: Our study reveals that sEH-P is a key player in energy and fat metabolism and contributes together with sEH-H to the regulation of cardiometabolic homeostasis. The development of pharmacological inhibitors of sEH-P appears of crucial importance to evaluate the interest of this promising therapeutic strategy in the management of obesity and cardiac ischemic complications.


Assuntos
Epóxido Hidrolases , Traumatismos Cardíacos , Obesidade , Animais , Feminino , Masculino , Ratos , Sistemas CRISPR-Cas , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Resistência à Insulina/genética , Lisofosfolipídeos , Obesidade/genética , Obesidade/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Traumatismo por Reperfusão/genética
6.
Nutrients ; 15(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36615754

RESUMO

Interactions between mitochondria and the endoplasmic reticulum, known as MAMs, are altered in the liver in obesity, which contributes to disruption of the insulin signaling pathway. In addition, the plasma level of glycine is decreased in obesity, and the decrease is strongly correlated with the severity of insulin resistance. Certain nutrients have been shown to regulate MAMs; therefore, we tested whether glycine supplementation could reduce insulin resistance in the liver by promoting MAM integrity. Glycine (5 mM) supported MAM integrity and insulin response in primary rat hepatocytes cultured under control and lipotoxic (palmitate 500 µM) conditions for 18 h. In contrast, in C57 BL/6 JOlaHsd mice (male, 6 weeks old) fed a high-fat, high-sucrose diet (HFHS) for 16 weeks, glycine supplementation (300 mg/kg) in drinking water during the last 6 weeks (HFHS-Gly) did not reverse the deleterious impact of HFHS-feeding on liver MAM integrity. In addition, glycine supplementation worsened fasting glycemia and glycemic response to intraperitoneal pyruvate injection compared to HFHS. The adverse impact of glycine supplementation on hepatic gluconeogenesis was further supported by the higher oxaloacetate/acetyl-CoA ratio in the liver in HFHS-Gly compared to HFHS. Although glycine improves MAM integrity and insulin signaling in the hepatocyte in vitro, no beneficial effect was found on the overall metabolic profile of HFHS-Gly-fed mice.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Masculino , Ratos , Camundongos , Animais , Intolerância à Glucose/metabolismo , Resistência à Insulina/fisiologia , Gluconeogênese , Glicina/farmacologia , Fígado/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Insulina , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Camundongos Endogâmicos C57BL
7.
Mol Ther Methods Clin Dev ; 18: 880-892, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32953937

RESUMO

We have determined whether orange juice-derived nanovesicles (ONVs) could be used for the treatment of obesity-associated intestinal complications. ONVs were characterized by lipidomic, metabolomic, electron microscopy. In vitro, intestinal barriers (IBs = Caco-2+HT-29-MTX) were treated with ONVs and co-cultured with adipocytes to monitor IB fat release. In vivo, obesity was induced with a high-fat, high-sucrose diet (HFHSD mice) for 12 weeks. Then, half of HFHSD mice were gavaged with ONVs. One-month ONV treatment did not modify HFHSD-induced insulin resistance but reversed diet-induced gut modifications. In the jejunum, ONVs increased villi size, reduced triglyceride content, and modulated mRNA levels of genes involved in immune response (tumor necrosis factor [TNF]-α and interleukin [IL]-1ß), barrier permeability (CLDN1, OCLN, ZO1), fat absorption, and chylomicron release. ONVs targeted microsomal triglyceride transfer protein (MTP) and angiopoietin-like protein-4 (ANGPTL4), two therapeutic targets to reduce plasma lipids and inflammation in gastrointestinal diseases. Interestingly, ONV treatment did not aggravate liver steatosis, as MTP mRNA was increased in the liver. Therefore, ONVs protected both intestine and the liver from fat overload associated with the HFHSD. As ONVs concentrated amino acids and bioactive lipids versus orange juice, which are deficient in obese patients, the use of ONVs as a dietary supplement could bring physiological relevant compounds in the jejunum to accelerate the restoration of intestinal functions during weight loss in obese patients.

8.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961865

RESUMO

Biological organisms are constantly exposed to an immense repertoire of molecules that cover environmental or food-derived molecules and drugs, triggering a continuous flow of stimuli-dependent adaptations. The diversity of these chemicals as well as their concentrations contribute to the multiplicity of induced effects, including activation, stimulation, or inhibition of physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of life, has proven to be immensely sensitive and highly adaptive to chemical stimuli. Therefore, studying the effect of endo- or xenobiotics over cellular metabolism delivers valuable knowledge to apprehend potential cellular activity of individual molecules and evaluate their acute or chronic benefits and toxicity. The development of modern metabolomics technologies such as mass spectrometry or nuclear magnetic resonance spectroscopy now offers unprecedented solutions for the rapid and efficient determination of metabolic profiles of cells and more complex biological systems. Combined with the availability of well-established cell culture techniques, these analytical methods appear perfectly suited to determine the biological activity and estimate the positive and negative effects of chemicals in a variety of cell types and models, even at hardly detectable concentrations. Metabolic phenotypes can be estimated from studying intracellular metabolites at homeostasis in vivo, while in vitro cell cultures provide additional access to metabolites exchanged with growth media. This article discusses analytical solutions available for metabolic phenotyping of cell culture metabolism as well as the general metabolomics workflow suitable for testing the biological activity of molecular compounds. We emphasize how metabolic profiling of cell supernatants and intracellular extracts can deliver valuable and complementary insights for evaluating the effects of xenobiotics on cellular metabolism. We note that the concepts and methods discussed primarily for xenobiotics exposure are widely applicable to drug testing in general, including endobiotics that cover active metabolites, nutrients, peptides and proteins, cytokines, hormones, vitamins, etc.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Técnicas de Cultura de Células , Meios de Cultura , Humanos , Metaboloma , Xenobióticos/metabolismo , Xenobióticos/farmacologia
9.
Anal Bioanal Chem ; 412(22): 5453-5463, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556564

RESUMO

Cellular metabolomics has become key to elucidate mechanistic aspects in various fields such as cancerology or pharmacology, and is rapidly becoming a standard phenotyping tool accessible to the broad biological community. Acquisition of reliable spectroscopic datasets, such as nuclear magnetic resonance (NMR) spectra, to characterize biological systems depends on the elaboration of robust methods for cellular metabolites extraction. Previous studies have addressed many issues raised by these protocols, however with little pondering on ergonomic and practical aspects of the methods that impact their scalability, reproducibility and hence their suitability to high-throughput studies or their use by non-metabolomics experts. Here, we optimize a fast and ergonomic protocol for extraction of metabolites from adherent mammalian cells for NMR metabolomics studies. The proposed extraction protocol, including cell washing, metabolism quenching and actual extraction of intracellular metabolites, was first optimized on HeLa cells. Efficiency of the protocol, in its globality and for the different individual steps, was assessed by NMR quantification of 27 metabolites from cellular extracts. We show that a single PBS wash provides a seemly compromise between contamination from growth medium and leakage of intracellular metabolites. In HeLa cells, extraction using pure methanol, without cell scraping, recovered a higher amount of intracellular metabolites than the reference methanol/water/chloroform method with cell scraping, with yields varying across metabolite classes. Optimized and reference protocols were further tested on eight cell lines of miscellaneous nature, and inter-operator reproducibility was demonstrated. Our results stress the need for tailored extraction protocols and show that fast protocols minimizing time-consuming steps, without compromising extraction yields, are suitable for high-throughput metabolomics studies. Graphical abstract.


Assuntos
Adesão Celular , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Meios de Cultura , Ergonomia , Ensaios de Triagem em Larga Escala , Humanos , Mamíferos , Solventes/química , Água/química
10.
ACS Infect Dis ; 5(11): 1879-1886, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31545890

RESUMO

Dysentery is a major health threat that dramatically impacts childhood morbidity and mortality in developing countries. Various pathogenic agents cause dysentery, such as Shigella spp. and Escherichia coli, which are very closely related if not identical species. Sensitive and precise detection and identification of the infectious agent is important to target the best therapeutic strategy, but the differential diagnosis of these two groups remains a challenge using conventional methods. Here, we present a nuclear magnetic resonance (NMR) based multivariate classification model employing bacterial metabolic footprints in postculture growth media with remarkable segregation capability, including the discrimination of lactose negative E. coli and Shigella spp. Our results confirm the potential of metabolomic markers in the field of bacterial identification for the distinction of even very closely related species.


Assuntos
Meios de Cultura/química , Escherichia coli/isolamento & purificação , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Shigella/isolamento & purificação , Meios de Cultura/metabolismo , Disenteria Bacilar/microbiologia , Escherichia coli/química , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Humanos , Shigella/química , Shigella/metabolismo
11.
Thyroid ; 29(9): 1327-1335, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31298651

RESUMO

Background: Resistance to thyroid hormone alpha (RTHα) is a rare genetic disease due to mutations in the THRA gene, which encodes thyroid hormone receptor alpha 1 (TRα1). Since its first description in 2012, 46 cases of RTHα have been reported worldwide, corresponding to 26 different mutations of TRα1. RTHα patients share some common symptoms with hypothyroid patients, without significant reduction in thyroid hormone level. The high variability of clinical features and the absence of reliable biochemical markers make the diagnosis of this disease difficult. Some of these mutations have been recently modeled in mice. Methods: In our study, we used four different mouse models heterozygous for frameshift mutations in the Thra gene. Two of them are very close to human mutations, while the two others have not yet been found in patients. We characterized the metabolic phenotypes of urine and plasma samples collected from these four animal models using an untargeted nuclear magnetic resonance (NMR)-based metabolomic approach. Results: Multivariate statistical analysis of the metabolomic profiles shows that biofluids of mice that carry human-like mutations can be discriminated from controls. Metabolic signatures associated with Thra mutations in urine and plasma are stable over time and clearly differ from the metabolic fingerprint of hypothyroidism in the mouse. Conclusion: Our results provide a proof-of-principle that easily accessible NMR-based metabolic fingerprints of biofluids could be used to diagnose RTHα in humans.


Assuntos
Líquidos Corporais/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Mutação , Receptores alfa dos Hormônios Tireóideos/genética , Animais , Genes erbA , Humanos , Hipotireoidismo/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Stem Cells Int ; 2019: 9323864, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223312

RESUMO

White adipose tissues are functionally heterogeneous and differently manage the excess of energy supply. While the expansion of subcutaneous adipose tissues (SAT) is protective in obesity, that of visceral adipose tissues (VAT) correlates with the emergence of metabolic diseases. Maintained in fat pads throughout life, adipose stem cells (ASC) are mesenchymal-like stem cells with adipogenesis and multipotent differentiation potential. ASC from distinct fat pads have long been reported to present distinct proliferation and differentiation potentials that are maintained in culture, yet the origins of these intrinsic differences are still unknown. Metabolism is central to stem cell fate decision in line with environmental changes. In this study, we performed high-resolution nuclear magnetic resonance (NMR) metabolomic analyses of ASC culture supernatants in order to characterize their metabolic phenotype in culture. We identified and quantified 29 ASC exometabolites and evaluated their consumption or secretion over 72 h of cell culture. Both ASC used glycolysis and mitochondrial metabolism, as evidenced by the high secretions of lactate and citrate, respectively, but V-ASC mostly used glycolysis. By varying the composition of the cell culture medium, we showed that glutaminolysis, rather than glycolysis, supported the secretion of pyruvate, alanine, and citrate, evidencing a peculiar metabolism in ASC cells. The comparison of the two types of ASC in glutamine-free culture conditions also revealed the role of glutaminolysis in the limitation of pyruvate routing towards the lactate synthesis, in S-ASC but not in V-ASC. Altogether, our results suggest a difference between depots in the capacity of ASC mitochondria to assimilate pyruvate, with probable consequences on their differentiation potential in pathways requiring an increased mitochondrial activity. These results highlight a pivotal role of metabolic mechanisms in the discrimination between ASC and provide new perspectives in the understanding of their functional differences.

13.
ACS Synth Biol ; 7(1): 218-226, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28915016

RESUMO

A counterintuitive cell-free protein synthesis (CFPS) strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL), triggers the development of hybrid systems composed of RRL ribosome-free supernatant complemented with ribosomes from different mammalian cell-types. Hybrid RRL systems maintain translational properties of the original ribosome cell types, and deliver protein expression levels similar to RRL. Here, we show that persistent ribosome-associated metabolic activity consuming ATP is a major obstacle for maximal protein yield. We provide a detailed picture of hybrid CFPS systems energetic metabolism based on real-time nuclear magnetic resonance (NMR) investigation of metabolites kinetics. We demonstrate that protein synthesis capacity has an upper limit at native ribosome concentration and that lower amounts of the ribosomal fraction optimize energy fluxes toward protein translation, consequently increasing CFPS yield. These results provide a rationalized strategy for further mammalian CFPS developments and reveal the potential of real-time NMR metabolism phenotyping for optimization of cell-free protein expression systems.


Assuntos
Metabolismo Energético/fisiologia , Biossíntese de Proteínas , Reticulócitos/metabolismo , Animais , Sistema Livre de Células , Cicloeximida/farmacologia , Glucose/metabolismo , Células HEK293 , Células HeLa , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Fosfocreatina/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Coelhos , Reticulócitos/citologia , Ribossomos/metabolismo
14.
Nat Chem Biol ; 9(9): 540-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851574

RESUMO

Hepatitis B virus (HBV) is an infectious, potentially lethal human pathogen. However, there are no effective therapies for chronic HBV infections. Antiviral development is hampered by the lack of high-resolution structures for essential HBV protein-protein interactions. The interaction between preS1, an HBV surface-protein domain, and its human binding partner, γ2-adaptin, subverts the membrane-trafficking apparatus to mediate virion export. This interaction is a putative drug target. We report here atomic-resolution descriptions of the binding thermodynamics and structural biology of the interaction between preS1 and the EAR domain of γ2-adaptin. NMR, protein engineering, X-ray crystallography and MS showed that preS1 contains multiple γ2-EAR-binding motifs that mimic the membrane-trafficking motifs (and binding modes) of host proteins. These motifs localize together to a relatively rigid, functionally important region of preS1, an intrinsically disordered protein. The preS1-γ2-EAR interaction was relatively weak and efficiently outcompeted by a synthetic peptide. Our data provide the structural road map for developing peptidomimetic antivirals targeting the γ2-EAR-preS1 interaction.


Assuntos
Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Antígenos de Superfície da Hepatite B/química , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Mimetismo Molecular , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/química , Motivos de Aminoácidos , Estrutura Terciária de Proteína , Termodinâmica
15.
Mol Cell ; 42(5): 569-83, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21549626

RESUMO

E3 ligases mediate the covalent attachment of ubiquitin to target proteins thereby enabling ubiquitin-dependent signaling. Unraveling how E3 ligases are regulated is important because miscontrolled ubiquitylation can lead to disease. Cellular inhibitor of apoptosis (cIAP) proteins are E3 ligases that modulate diverse biological processes such as cell survival, proliferation, and migration. Here, we have solved the structure of the caspase recruitment domain (CARD) of cIAP1 and identified that it is required for cIAP1 autoregulation. We demonstrate that the CARD inhibits activation of cIAP1's E3 activity by preventing RING dimerization, E2 binding, and E2 activation. Moreover, we show that the CARD is required to suppress cell proliferation and migration. Further, CARD-mediated autoregulation is also necessary to maximally suppress caspase-8-dependent apoptosis and vascular tree degeneration in vivo. Taken together, our data reveal mechanisms by which the E3 ligase activity of cIAP1 is controlled, and how its deregulation impacts on cell proliferation, migration and cell survival.


Assuntos
Proteínas Inibidoras de Apoptose/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Sequência de Aminoácidos , Animais , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/genética , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína/fisiologia , Alinhamento de Sequência , Eletricidade Estática , Ubiquitina-Proteína Ligases/química , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
17.
Int J Mol Sci ; 11(4): 1808-24, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20480043

RESUMO

Intrinsic cell death is mediated by interaction between pro-apoptotic and pro-survival proteins of the B-cell lymphoma-2 (Bcl-2) family. Members of this family are either intrinsically disordered or contain intrinsically disordered regions/domains that are critical to their function. Alternate splicing and post-translational modifications can determine the extent of these disordered regions and are critical for regulating Bcl-2 proteins. Conformational plasticity and structural transitions characterize the interactions within the Bcl-2 family, with conserved sequence motifs on both binding partners required for their molecular recognition.


Assuntos
Apoptose , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Processamento Alternativo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-bcl-2/química
19.
Biochemistry ; 48(37): 8771-3, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19697958

RESUMO

Psb27 is a highly conserved component of photosystem II. The three-dimensional structure has a well-defined helical core, composed of four helices arranged in a right-handed up-down-up-down fold, with a less ordered region of the structure located at the N-terminus. The position of conserved residues on the surface suggests conserved functional roles for distinct interconnected features encompassing a P-phi-P loop, a polar patch spanning helices alpha3 and alpha4, and the N-terminal sequence.


Assuntos
Proteínas de Bactérias/química , Complexo de Proteína do Fotossistema II/química , Synechocystis/química , Motivos de Aminoácidos/efeitos da radiação , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Temperatura Baixa/efeitos adversos , Sequência Conservada/efeitos da radiação , Cristalografia por Raios X , Luz/efeitos adversos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Estrutura Secundária de Proteína/efeitos da radiação , Soluções , Synechocystis/crescimento & desenvolvimento , Synechocystis/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...