Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38883708

RESUMO

The offering of grocery stores is a strong driver of consumer decisions, shaping their diet and long-term health. While highly processed food like packaged products, processed meat, and sweetened soft drinks have been increasingly associated with unhealthy diet, information on the degree of processing characterizing an item in a store is not straightforward to obtain, limiting the ability of individuals to make informed choices. Here we introduce GroceryDB, a database with over 50,000 food items sold by Walmart, Target, and Wholefoods, unveiling how big data can be harnessed to empower consumers and policymakers with systematic access to the degree of processing of the foods they select, and the potential alternatives in the surrounding food environment. The wealth of data collected on ingredient lists and nutrition facts allows a large scale analysis of ingredient patterns and degree of processing stratified by store, food category, and price range. We find that the nutritional choices of the consumers, translated as the degree of food processing, strongly depend on the food categories and grocery stores. Moreover, the data allows us to quantify the individual contribution of over 1,000 ingredients to ultra-processing. GroceryDB and the associated http://TrueFood.Tech/ website make this information accessible, guiding consumers toward less processed food choices while assisting policymakers in reforming the food supply.

2.
Proc Natl Acad Sci U S A ; 121(3): e2316394121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194451

RESUMO

Colloidal gels exhibit solid-like behavior at vanishingly small fractions of solids, owing to ramified space-spanning networks that form due to particle-particle interactions. These networks give the gel its rigidity, and with stronger attractions the elasticity grows as well. The emergence of rigidity can be described through a mean field approach; nonetheless, fundamental understanding of how rigidity varies in gels of different attractions is lacking. Moreover, recovering an accurate gelation phase diagram based on the system's variables has been an extremely challenging task. Understanding the nature of colloidal clusters, and how rigidity emerges from their connections is key to controlling and designing gels with desirable properties. Here, we employ network analysis tools to interrogate and characterize the colloidal structures. We construct a particle-level network, having all the spatial coordinates of colloids with different attraction levels, and also identify polydisperse rigid fractal clusters using a Gaussian mixture model, to form a coarse-grained cluster network that distinctly shows main physical features of the colloidal gels. A simple mass-spring model then is used to recover quantitatively the elasticity of colloidal gels from these cluster networks. Interrogating the resilience of these gel networks shows that the elasticity of a gel (a dynamic property) is directly correlated to its cluster network's resilience (a static measure). Finally, we use the resilience investigations to devise [and experimentally validate] a fully resolved phase diagram for colloidal gelation, with a clear solid-liquid phase boundary using a single volume fraction of particles well beyond this phase boundary.

3.
Nat Commun ; 14(1): 2312, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085506

RESUMO

Despite the accumulating evidence that increased consumption of ultra-processed food has adverse health implications, it remains difficult to decide what constitutes processed food. Indeed, the current processing-based classification of food has limited coverage and does not differentiate between degrees of processing, hindering consumer choices and slowing research on the health implications of processed food. Here we introduce a machine learning algorithm that accurately predicts the degree of processing for any food, indicating that over 73% of the US food supply is ultra-processed. We show that the increased reliance of an individual's diet on ultra-processed food correlates with higher risk of metabolic syndrome, diabetes, angina, elevated blood pressure and biological age, and reduces the bio-availability of vitamins. Finally, we find that replacing foods with less processed alternatives can significantly reduce the health implications of ultra-processed food, suggesting that access to information on the degree of processing, currently unavailable to consumers, could improve population health.


Assuntos
Dieta , Fast Foods , Valor Nutritivo , Manipulação de Alimentos , Alimento Processado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...