Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 218(4)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34057474

RESUMO

The axis of the vertebrate neural tube is patterned, in part, by a ventral to dorsal gradient of Shh signaling. In the ventral spinal cord, Shh induces concentration-dependent expression of transcription factors, subdividing neural progenitors into distinct domains that subsequently produce distinct neuronal and glial subtypes. In particular, progenitors of the pMN domain express the bHLH transcription factor Olig2 and produce motor neurons followed by oligodendrocytes, the myelinating glial cell type of the central nervous system. In addition to its role in patterning ventral progenitors, Shh signaling must be maintained through development to specify pMN progenitors for oligodendrocyte fate. Using a forward genetic screen in zebrafish for mutations that disrupt the development of oligodendrocytes, we identified a new mutant allele of boc, which encodes a type I transmembrane protein that functions as a coreceptor for Shh. Embryos homozygous for the bocco25 allele, which creates a missense mutation in a Fibronectin type III domain that binds Shh, have normally patterned spinal cords but fail to maintain pMN progenitors, resulting in a deficit of oligodendrocytes. Using a sensitive fluorescent detection method for in situ RNA hybridization, we found that spinal cord cells express boc in a graded fashion that is inverse to the gradient of Shh signaling activity and that boc function is necessary to maintain pMN progenitors by shaping the Shh signaling gradient.


Assuntos
Moléculas de Adesão de Célula Nervosa/metabolismo , Neurogênese , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Moléculas de Adesão de Célula Nervosa/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oligodendroglia/citologia , Medula Espinal/citologia , Medula Espinal/embriologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
2.
Dev Biol ; 444(2): 93-106, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30347186

RESUMO

During development of the central nervous system oligodendrocyte precursor cells (OPCs) give rise to both myelinating oligodendrocytes and NG2 glia, which are the most proliferative cells in the adult mammalian brain. NG2 glia retain characteristics of OPCs, and some NG2 glia produce oligodendrocytes, but many others persist throughout adulthood. Why some OPCs differentiate as oligodendrocytes during development whereas others persist as OPCs and acquire characteristics of NG2 glia is not known. Using zebrafish spinal cord as a model, we found that OPCs that differentiate rapidly as oligodendrocytes and others that remain as OPCs arise in sequential waves from distinct neural progenitors. Additionally, oligodendrocyte and persistent OPC fates are specified during a defined critical period by small differences in Shh signaling and Notch activity, which modulates Shh signaling response. Thus, our data indicate that OPCs fated to produce oligodendrocytes or remain as OPCs during development are specified as distinct cell types, raising the possibility that the myelinating potential of OPCs is set by graded Shh signaling activity.


Assuntos
Proteínas Hedgehog/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Receptores Notch/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula , Proliferação de Células , Sistema Nervoso Central/metabolismo , Neuroglia/metabolismo , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo , Células-Tronco/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Development ; 143(13): 2292-304, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226318

RESUMO

The transition of dividing neuroepithelial progenitors to differentiated neurons and glia is essential for the formation of a functional nervous system. Sonic hedgehog (Shh) is a mitogen for spinal cord progenitors, but how cells become insensitive to the proliferative effects of Shh is not well understood. Because Shh reception occurs at primary cilia, which are positioned within the apical membrane of neuroepithelial progenitors, we hypothesized that loss of apical characteristics reduces the Shh signaling response, causing cell cycle exit and differentiation. We tested this hypothesis using genetic and pharmacological manipulation, gene expression analysis and time-lapse imaging of zebrafish embryos. Blocking the function of miR-219, a microRNA that downregulates apical Par polarity proteins and promotes progenitor differentiation, elevated Shh signaling. Inhibition of Shh signaling reversed the effects of miR-219 depletion and forced expression of Shh phenocopied miR-219 deficiency. Time-lapse imaging revealed that knockdown of miR-219 function accelerates the growth of primary cilia, revealing a possible mechanistic link between miR-219-mediated regulation of apical Par proteins and Shh signaling. Thus, miR-219 appears to decrease progenitor cell sensitivity to Shh signaling, thereby driving these cells towards differentiation.


Assuntos
Proteínas Hedgehog/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Animais , Contagem de Células , Polaridade Celular , Cílios/metabolismo , Embrião não Mamífero/metabolismo , MicroRNAs/genética , Mutação/genética , Organogênese , Peixe-Zebra/genética
4.
Genes Dev ; 29(23): 2504-15, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26584621

RESUMO

During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2(+) cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis.


Assuntos
Diferenciação Celular , Neurônios Motores/citologia , Oligodendroglia/citologia , Células-Tronco/citologia , Peixe-Zebra/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Movimento Celular , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Neuroepiteliais/citologia , Neurogênese/fisiologia , Fator de Transcrição 2 de Oligodendrócitos , Estrutura Terciária de Proteína , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
J Neurosci ; 35(44): 14861-71, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538655

RESUMO

An important characteristic of vertebrate CNS development is the formation of specific amounts of insulating myelin membrane on axons. CNS myelin is produced by oligodendrocytes, glial cells that extend multiple membrane processes to wrap multiple axons. Recent data have shown that signaling mediated by the mechanistic target of rapamycin (mTOR) serine/threonine kinase promotes myelination, but factors that regulate mTOR activity for myelination remain poorly defined. Through a forward genetic screen in zebrafish, we discovered that mutation of fbxw7, which encodes the substrate recognition subunit of a SCF ubiquitin ligase that targets proteins for degradation, causes hypermyelination. Among known Fbxw7 targets is mTOR. Here, we provide evidence that mTOR signaling activity is elevated in oligodendrocyte lineage cells of fbxw7 mutant zebrafish larvae. Both genetic and pharmacological inhibition of mTOR function suppressed the excess myelin gene expression resulting from loss of Fbxw7 function, indicating that mTOR is a functionally relevant target of Fbxw7 in oligodendrocytes. fbxw7 mutant larvae wrapped axons with more myelin membrane than wild-type larvae and oligodendrocyte-specific expression of dominant-negative Fbxw7 produced longer myelin sheaths. Our data indicate that Fbxw7 limits the myelin-promoting activity of mTOR, thereby serving as an important brake on developmental myelination. SIGNIFICANCE STATEMENT: Myelin, a specialized, proteolipid-rich membrane that ensheaths and insulates nerve fibers, facilitates the rapid conduction of electrical impulses over long distances. Abnormalities in myelin formation or maintenance result in intellectual and motor disabilities, raising a need for therapeutic strategies designed to promote myelination. The mTOR kinase is a powerful driver of myelination, but the mechanisms that regulate mTOR function in myelination are not well understood. Our studies reveal that Fbxw7, a subunit of a ubiquitin ligase that targets other proteins for degradation, acts as a brake on myelination by limiting mTOR function. These findings suggest that Fbxw7 helps tune the amount of myelin produced during development and raise the possibility that Fbxw7 could be a target of myelin-promoting therapies.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas F-Box/fisiologia , Bainha de Mielina/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/biossíntese , Ubiquitina-Proteína Ligases/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Proteína 7 com Repetições F-Box-WD , Feminino , Bainha de Mielina/ultraestrutura , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/ultraestrutura , Gravidez , Complexos Ubiquitina-Proteína Ligase , Peixe-Zebra
6.
Nat Neurosci ; 18(5): 683-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25849987

RESUMO

An essential feature of vertebrate neural development is ensheathment of axons with myelin, an insulating membrane formed by oligodendrocytes. Not all axons are myelinated, but mechanisms directing myelination of specific axons are unknown. Using zebrafish, we found that activity-dependent secretion stabilized myelin sheath formation on select axons. When VAMP2-dependent exocytosis was silenced in single axons, oligodendrocytes preferentially ensheathed neighboring axons. Nascent sheaths formed on silenced axons were shorter in length, but when activity of neighboring axons was also suppressed, inhibition of sheath growth was relieved. Using in vivo time-lapse microscopy, we found that only 25% of oligodendrocyte processes that initiated axon wrapping were stabilized during normal development and that initiation did not require activity. Instead, oligodendrocyte processes wrapping silenced axons retracted more frequently. We propose that axon selection for myelination results from excessive and indiscriminate initiation of wrapping followed by refinement that is biased by activity-dependent secretion from axons.


Assuntos
Potenciais de Ação/fisiologia , Axônios/ultraestrutura , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Exocitose/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/análise , Proteínas de Homeodomínio/genética , Microscopia Confocal , Bainha de Mielina/efeitos dos fármacos , Neurogênese , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/crescimento & desenvolvimento , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/fisiologia , Tetrodotoxina/farmacologia , Imagem com Lapso de Tempo , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Veratridina/farmacologia , Peixe-Zebra/embriologia
7.
Dev Biol ; 350(1): 101-11, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21129373

RESUMO

The cordon-bleu (Cobl) gene is widely conserved in vertebrates, with developmentally regulated axial and epithelial expression in mouse and chick embryos. In vitro, Cobl can bind monomeric actin and nucleate formation of unbranched actin filaments, while in cultured cells it can modulate the actin cytoskeleton. However, an essential role for Cobl in vivo has yet to be determined. We have used zebrafish as a model to assess the requirements for Cobl in embryogenesis. We find that cobl shows enriched expression in ciliated epithelial tissues during zebrafish organogenesis. Cobl protein is enriched in the apical domain of ciliated cells, in close proximity to the apical actin cap. Reduction of Cobl by antisense morpholinos reveals an essential role in development of motile cilia in organs such as Kupffer's vesicle and the pronephros. In Kupffer's vesicle, the reduction in Cobl coincides with a reduction in the amount of apical F-actin. Thus, Cobl represents a molecular activity that couples developmental patterning signals with local intracellular cytoskeletal dynamics to support morphogenesis of motile cilia.


Assuntos
Citoesqueleto de Actina/metabolismo , Padronização Corporal , Proteínas dos Microfilamentos/metabolismo , Organogênese , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Cílios/metabolismo , Cílios/fisiologia , Embrião não Mamífero/metabolismo , Proteínas dos Microfilamentos/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...