Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Malar J ; 21(1): 242, 2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35989358

RESUMO

BACKGROUND: Targeted research on residual malaria transmission is important to improve strategies in settings pursuing elimination, where transmission reductions prove challenging. This study aimed to detect and characterize spatial heterogeneity and factors associated with Plasmodium falciparum infections and exposure, P. falciparum apical membrane antigen 1 (PfAMA1) antibody (Ab) response, in the Central Highlands of Madagascar (CHL). METHODS: From May to July 2014, a cross-sectional school-based survey was carried out in 182 fokontany (villages) within 7 health districts of the CHL. Rapid diagnostic tests (RDTs) and a bead-based immunoassay including PfAMA1 antigen biomarker were used to estimate malaria prevalence and seroprevalence, respectively. Local Moran's I index was used to detect spatial "hotspots". Remotely sensed environmental data-temperature, vegetation indices, land covers, and elevation-were used in multivariable mixed-effects logistic regression models to characterize factors associated with malaria infection and cumulative exposure. RESULTS: Among 6,293 school-children ages 2-14 years surveyed, RDT prevalence was low at 0.8% (95% CI 0.6-1.1%), while PfAMA1 Ab seroprevalence was 7.0% (95% CI 6.4-7.7%). Hotspots of PfAMA1 Ab seroprevalence were observed in two districts (Ankazobe and Mandoto). Seroprevalence increased for children living > 5 km from a health centre (adjusted odds ratio (OR) = 1.6, 95% CI 1.2-2.2), and for those experiencing a fever episode in the previous 2 weeks (OR 1.7, 95% CI 1.2-2.4), but decreased at higher elevation (for each 100-m increase, OR = 0.7, 95% CI 0.6-0.8). A clear age pattern was observed whereby children 9-10 years old had an OR of 1.8 (95% CI 1.2-2.4), children 11-12 years an OR of 3.7 (95% CI 2.8-5.0), and children 13-14 years an OR of 5.7 (95% CI 4.0-8.0) for seropositivity, compared with younger children (2-8 years). CONCLUSION: The use of serology in this study provided a better understanding of malaria hotspots and associated factors, revealing a pattern of higher transmission linked to geographical barriers in health care access. The integration of antibody-assays into existing surveillance activities could improve exposure assessment, and may help to monitor the effectiveness of malaria control efforts and adapt elimination interventions.


Assuntos
Malária Falciparum , Malária , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , Prevalência , Estudos Soroepidemiológicos
2.
Med Trop Sante Int ; 2(2)2022 06 30.
Artigo em Francês | MEDLINE | ID: mdl-35919251

RESUMO

Background: Malaria is a parasitic disease caused by a hematozoan of the genus Plasmodium. Early diagnosis followed by effective treatment is one of the keys to control this disease. In Madagascar, after more than 60 years of use for the treatment of uncomplicated malaria, chloroquine (CQ) was abandoned in favor of artesunate + amodiaquine (ASAQ) combination because of high prevalence of CQ treatment failure. Surveillance based on the assessment of therapeutic efficacy and genetic markers of resistance to antimalarials is therefore essential in order to detect the emergence of potentially resistant parasites as early as possible. In this context, our study aimed to genotype the Plasmodium falciparum chloroquine resistance transporter gene or Pfcrt and Plasmodium falciparum multidrug resistance gene 1 or Pfmdr1 in isolates collected from children in the district of Vatomandry. Methods: A total of 142 P. falciparum isolates collected during active case detection of malaria in children under 15 years old, between February and March of 2016 and 2017 in Vatomandry district, were analyzed. Pfcrt (K76T codon) and Pfmdr1 (N86Y codon) genotyping was carried out by polymerase chain reaction followed by enzymatic digestion (restriction fragment length polymorphism) or PCR-RFLP. Results: The successful rates of amplification of Pfcrt and Pfmdr1 genes were low, around 27% and 39% respectively. The prevalence of isolates carrying the mutant Pfcrt K76T codon and the mutant Pfmdr1 N86Y codon was 2.6% [95% confidence interval (95% CI): 0.1 - 15.0%] and 36% [95% CI: 23.7 - 49.7%] respectively. Conclusion: Despite the limited number of samples analyzed, our study highlighted the circulation of isolates carrying both the mutant Pfcrt K76T and Pfmdr1 N86Y alleles. Although the prevalence of mutations in Pfcrt and Pfmdr1 genes that we observed was low, other studies should be carried out in order to follow the evolution of these markers in time and space. The use of more sensitive methods will better characterize P. falciparum strains circulating in Madagascar. Artesunate-amodiaquine is used as a first-line treatment for uncomplicated malaria in the country; it is also crucial to monitor the other codons, i.e. 184 and 1246 of the Pfmdr1 gene, implicated in the resistance of P. falciparum to amodiaquine in Africa.


Assuntos
Malária Falciparum , Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Plasmodium falciparum , Proteínas de Protozoários , Amodiaquina/farmacologia , Artesunato/farmacologia , Criança , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Genótipo , Humanos , Madagáscar/epidemiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
3.
Malar J ; 21(1): 227, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883089

RESUMO

BACKGROUND: Rapid diagnostic tests (RDT) are widely used for malaria diagnosis in Madagascar, where Plasmodium falciparum is the predominant species. Molecular diagnosis is essential for malaria surveillance, but requires additional blood samples for DNA extraction. Used RDTs is an attractive alternative that can be used as a source of DNA. Plasmodium falciparum genetic diversity and multiplicity of infection, usually determined by the genotyping of polymorphic regions of merozoite surface proteins 1 and 2 genes (msp1, msp2), and the repeated region RII of the glutamate-rich protein gene (glurp) have been associated with malaria transmission levels and subsequently with the impact of the deployed control strategies. Thus, the study aims to use RDT as DNA source to detect Plasmodium species, to characterize Plasmodium falciparum genetic diversity and determine the multiplicity of infection. METHODS: A pilot study was conducted in two sites with different epidemiological patterns: Ankazomborona (low transmission area) and Matanga (high transmission area). On May 2018, used RDT (SD BIOLINE Malaria Ag P.f/Pan, 05FK63) were collected as DNA source. Plasmodium DNA was extracted by simple elution with nuclease free water. Nested-PCR were performed to confirm Plasmodium species and to analyse P. falciparum msp1, msp2 and glurp genes polymorphisms. RESULTS: Amongst the 170 obtained samples (N = 74 from Ankazomborona and N = 96 from Matanga), Plasmodium positivity rate was 23.5% (40/170) [95% CI 17.5-30.8%] by nested-PCR with 92.2% (37/40) positive to P. falciparum, 5% (2/40) to Plasmodium vivax and 2.5% (1/40) to P. falciparum/P. vivax mixed infection. Results showed high polymorphisms in P. falciparum msp1, msp2 and glurp genes. Multiple infection rate was 28.6% [95% CI 12.2-52.3%]. The mean of MOI was 1.79 ± 0.74. CONCLUSION: This pilot study highlighted that malaria diagnosis and molecular analysis are possible by using used malaria RDT. A large-scale study needs to be conducted to assess more comprehensively malaria parasites transmission levels and provide new data for guiding the implementation of local strategies for malaria control and elimination. Trial registration Retrospectively registered.


Assuntos
Malária Falciparum , Plasmodium falciparum , Antígenos de Protozoários/genética , DNA de Protozoário/genética , Variação Genética , Humanos , Madagáscar , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Projetos Piloto , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética
4.
J Infect Dis ; 223(6): 995-1004, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-32761176

RESUMO

BACKGROUND: In low-malaria-transmission areas of Madagascar, annual parasite incidence (API) from routine data has been used to target indoor residual spraying at subdistrict commune level. To assess validity of this approach, we conducted school-based serological surveys and health facility (HF) data quality assessments in 7 districts to compare API to gold-standard commune-level serological measures. METHODS: At 2 primary schools in each of 93 communes, 60 students were randomly selected with parents and teachers. Capillary blood was drawn for rapid diagnostic tests (RDTs) and serology. Multiplex bead-based immunoassays to detect antibodies to 5 Plasmodium falciparum antigens were conducted, and finite mixture models used to characterize seronegative and seropositive populations. Reversible catalytic models generated commune-level annual seroconversion rates (SCRs). HF register data were abstracted to assess completeness and accuracy. RESULTS: RDT positivity from 12 770 samples was 0.5%. Seroprevalence to tested antigens ranged from 17.9% (MSP-1) to 59.7% (PF13). Median commune-level SCR was 0.0108 (range, 0.001-0.075). Compared to SCRs, API identified 71% (95% confidence interval, 51%-87%) of the 30% highest-transmission communes; sensitivity declined at lower levels. Routine data accuracy did not substantially affect API performance. CONCLUSIONS: API performs reasonably well at identifying higher-transmission communes but sensitivity declined at lower transmission levels.


Assuntos
Malária , Instalações de Saúde , Humanos , Madagáscar/epidemiologia , Malária/diagnóstico , Malária/epidemiologia , Malária/prevenção & controle , Instituições Acadêmicas , Estudos Soroepidemiológicos
5.
MAbs ; 2(4): 416-27, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20581462

RESUMO

Early diagnosis and appropriate treatment are key elements of malaria control programs in endemic areas. A major step forward in recent years has been the production and use of rapid diagnostic tests (RDTs) in settings where microscopy is impracticable. Many current RDTs target the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) released in the plasma of infected individuals. These RDTs have had an indisputably positive effect on malaria management, but still present several limitations, including the poor characterization of the commercial monoclonal antibodies (mAbs) used for PfHRP2 detection, variable sensitivity and specificity, and high costs. RDT use is further limited by impaired stability caused by temperature fluctuations during transport and uncontrolled storage in field-based facilities. To circumvent such drawbacks, an alternative could be the development of well-characterized, stabilized recombinant antibodies, with high binding affinity and specificity. Here, we report the characterization of the cDNA sequences encoding the Fab fragment of F1110 and F1546, two novels anti-PfHRP2 mAbs. FabF1546 was produced in the Escherichia coli periplasm. Its properties of binding to the parasite and to a recombinant PfHRP-2 antigen were similar to those of the parental mAb. As the affinity and stability of recombinant antibodies can be improved by protein engineering, our results open a novel approach for the development of an improved RDT for malaria diagnosis.


Assuntos
Anticorpos Antiprotozoários/genética , Escherichia coli/metabolismo , Fragmentos Fab das Imunoglobulinas/genética , Malária Falciparum/diagnóstico , Plasmodium falciparum/imunologia , Proteínas Recombinantes/genética , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/química , Antígenos de Protozoários/imunologia , DNA Complementar/análise , Diagnóstico Precoce , Escherichia coli/genética , Testes Hematológicos , Humanos , Malária Falciparum/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Engenharia de Proteínas , Proteínas de Protozoários/imunologia , Sensibilidade e Especificidade
6.
Acta Trop ; 111(2): 160-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19376076

RESUMO

The aim of this study was to provide baseline information of the epidemiological situation of malaria in Madagascar using serological markers. We carried out cross-sectional studies in schoolchildren from eight sites in the four different malarious epidemiological strata of Madagascar. We studied the prevalence of anti-MSP1 antibodies to assess the burden, and anti-CSP antibodies to estimate the transmission intensity, of malaria. The overall prevalence of each antibody tested was 46.1% for anti-PfMSP-1, 15.2% for anti-PvMSP-1, 14.9% for anti-PfCSP, 4.9% for anti-PvCSP and 2.4% for anti-PmCSP. The prevalence of the five antibodies varied significantly between the sites (P<10(-6)). We also found significant effects of ethnic origin on the prevalence of anti-PfMSP1 antibodies. With regular testing in the same target populations, this data will be particularly useful for managing the elimination strategy supported by the Malagasy Government.


Assuntos
Malária/epidemiologia , Adolescente , Anticorpos Antiprotozoários/sangue , Criança , Pré-Escolar , Estudos Transversais , Etnicidade , Feminino , Geografia , Humanos , Madagáscar/epidemiologia , Masculino , Proteína 1 de Superfície de Merozoito/imunologia , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...