Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(34): 30601-30621, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061736

RESUMO

Development of light-harvesting properties and inhibition of photogenerated charge carrier recombination are of paramount significance in the photocatalytic process. In the present work, we described the synthesis of core-shell heterostructures, which are composed of titanium oxide (TiO2) and cerium oxide (CeO2) deposited on a reduced graphene oxide (rGO) surface as a conductive substrate. Following the synthesis of ternary rGO-CeO2@TiO2 and rGO-TiO2@CeO2 nanostructures, their photocatalytic activity was investigated toward the degradation of rhodamine B dye as an organic pollutant under UV light irradiation. The obtained structures were characterized with high-resolution transmission electron microscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy surface analysis, and UV-Vis spectroscopy. Various parameters including pH, catalyst dosage, temperature, and contact time were studied for photocatalysis optimization. Heterostructures showed considerable advantages because of their high surface area and superior photocatalytic performance. In contrast, rGO-CeO2@TiO2 showed the highest photocatalytic activity, which is attributed to the more effective electron-hole separation and quick suppression of charge recombination at core-shell phases. A biological assay of the prepared heterostructure was performed to determine the cytotoxicity against breast cancer cells (MCF-7) and demonstrated a very low survival rate at 7.65% of cells at the 17.5 mg mL-1 concentration of applied photocatalyst.

2.
Sci Rep ; 12(1): 5927, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396520

RESUMO

Developing a cheap, stable and effective photocatalyst is necessary for remediation of persistent organic pollutants. To address this challenge, we proposed a unique interfacial engineering technique and proper bandgap matching strategy to synthesize MWCNTs/ZnO/Chitosan ternary nanocomposite for effective photocatalytic application. The features of the prepared samples were determined by FESEM, TEM, EDX, elemental mapping, AFM, FT-IR, XRD, UV-Vis spectroscopy and BET surface analysis. The obtained results showed successful fabrication of synthesized nanocomposites with enhanced surface area. Degradation effect of nanostructures on methylene blue (MB) and antibacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis) pathogenic strains were investigated. The proposed photocatalytic mechanism illustrated the electron transfer facilitated by MWCNTs/ZnO/Chitosan structure which results in spatial separation of electron-hole pairs. Compared with ZnO and ZnO/Chitosan, the prepared MWCNTs/ZnO/Chitosan ternary nanocomposite showed high usage of UV illumination and superior separation of photogenerated electron-hole pairs. MWCNTs/ZnO/Chitosan illustrated 86.26% adsorption rate and outstanding increased photocatalytic activity on MB degradation efficiency of 98.76% after 20 min. Stability of photocatalyst reached from 98.76% initial decolorization to 85% at the fourth cycle. In addition, the ternary nanocomposite also exhibited remarkable bactericidal activity against gram-positive (S. aureus) and (B. subtilis) and gram-negative (E. coli) bacteria strains. Due to the obtained results, the prepared nanocomposite would be an efficient candidate photocatalyst with antibacterial properties.


Assuntos
Quitosana , Nanocompostos , Óxido de Zinco , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus subtilis , Catálise , Quitosana/química , Escherichia coli , Azul de Metileno/química , Nanocompostos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Óxido de Zinco/química
3.
J Mol Graph Model ; 107: 107948, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34082341

RESUMO

The 4-functionalized 6,6'-dimethyl-3,3'-dihydroxy-2,2'-bipyridine dyes (BP(OH)2-Rs) have exhibited dienol and diketo emissions. The optimum geometrical structures for ground, singlet and triplet excited states are computed by DFT/B3LYP/6-31++G that showed the planarity of BP(OH)2-Rs structure. The emission spectra of the molecules are determined in the gas-phase at singlet and triplet excited states using CIS/6-31++G. The theoretical calculations are carried out for BP(OH)2-Rs to understand the impact of different substituents (R = -H (I), -Br (II), -TMS (III), -C2H (IV), -terpyridine (V) and -bodipy (diazaboraindacene) (VI)) on excited-state intramolecular proton transfer (ESIPT) in singlet and triplet excited states. Based on the calculations, the concerted diproton transfer proceeds in the triplet excited state, in which nπ* state has a significant participation in ESIPT. The spectral variation at ESIPT emission of BP(OH)2-Rs is influenced by the electron-acceptor ability of the substituents. The compound V revealed a higher spectral intensity compared to the others. From the comparison with the experimental data, the molecule V is almost planar agreed with the X-ray structure and trend variation of wavelengths. The molecule VI contains bodipy chromophore that excitation energy transfers completely from BP(OH)2 core to a bodipy substituent, leading to emission from the lowest-lying bodipy substituent, and consequently, ESIPT does not occur for this dye.


Assuntos
2,2'-Dipiridil , Prótons , Corantes , Simulação por Computador , Luminescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...