Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Form Res ; 8: e53574, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869940

RESUMO

BACKGROUND: To investigate the impacts of the COVID-19 pandemic on the health workforce, we aimed to develop a framework that synergizes natural language processing (NLP) techniques and human-generated analysis to reduce, organize, classify, and analyze a vast volume of publicly available news articles to complement scientific literature and support strategic policy dialogue, advocacy, and decision-making. OBJECTIVE: This study aimed to explore the possibility of systematically scanning intelligence from media that are usually not captured or best gathered through structured academic channels and inform on the impacts of the COVID-19 pandemic on the health workforce, contributing factors to the pervasiveness of the impacts, and policy responses, as depicted in publicly available news articles. Our focus was to investigate the impacts of the COVID-19 pandemic and, concurrently, assess the feasibility of gathering health workforce insights from open sources rapidly. METHODS: We conducted an NLP-assisted media content analysis of open-source news coverage on the COVID-19 pandemic published between January 2020 and June 2022. A data set of 3,299,158 English news articles on the COVID-19 pandemic was extracted from the World Health Organization Epidemic Intelligence through Open Sources (EIOS) system. The data preparation phase included developing rules-based classification, fine-tuning an NLP summarization model, and further data processing. Following relevancy evaluation, a deductive-inductive approach was used for the analysis of the summarizations. This included data extraction, inductive coding, and theme grouping. RESULTS: After processing and classifying the initial data set comprising 3,299,158 news articles and reports, a data set of 5131 articles with 3,007,693 words was devised. The NLP summarization model allowed for a reduction in the length of each article resulting in 496,209 words that facilitated agile analysis performed by humans. Media content analysis yielded results in 3 sections: areas of COVID-19 impacts and their pervasiveness, contributing factors to COVID-19-related impacts, and responses to the impacts. The results suggest that insufficient remuneration and compensation packages have been key disruptors for the health workforce during the COVID-19 pandemic, leading to industrial actions and mental health burdens. Shortages of personal protective equipment and occupational risks have increased infection and death risks, particularly at the pandemic's onset. Workload and staff shortages became a growing disruption as the pandemic progressed. CONCLUSIONS: This study demonstrates the capacity of artificial intelligence-assisted media content analysis applied to open-source news articles and reports concerning the health workforce. Adequate remuneration packages and personal protective equipment supplies should be prioritized as preventive measures to reduce the initial impact of future pandemics on the health workforce. Interventions aimed at lessening the emotional toll and workload need to be formulated as a part of reactive measures, enhancing the efficiency and maintainability of health delivery during a pandemic.

2.
BMJ Open ; 12(4): e051403, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365510

RESUMO

OBJECTIVE: To predict older adults' risk of avoidable hospitalisation related to ambulatory care sensitive conditions (ACSC) using machine learning applied to administrative health data of Ontario, Canada. DESIGN, SETTING AND PARTICIPANTS: A retrospective cohort study was conducted on a large cohort of all residents covered under a single-payer system in Ontario, Canada over the period of 10 years (2008-2017). The study included 1.85 million Ontario residents between 65 and 74 years old at any time throughout the study period. DATA SOURCES: Administrative health data from Ontario, Canada obtained from the (ICES formely known as the Institute for Clinical Evaluative Sciences Data Repository. MAIN OUTCOME MEASURES: Risk of hospitalisations due to ACSCs 1 year after the observation period. RESULTS: The study used a total of 1 854 116 patients, split into train, validation and test sets. The ACSC incidence rates among the data points were 1.1% for all sets. The final XGBoost model achieved an area under the receiver operating curve of 80.5% and an area under precision-recall curve of 0.093 on the test set, and the predictions were well calibrated, including in key subgroups. When ranking the model predictions, those at the top 5% of risk as predicted by the model captured 37.4% of those presented with an ACSC-related hospitalisation. A variety of features such as the previous number of ambulatory care visits, presence of ACSC-related hospitalisations during the observation window, age, rural residence and prescription of certain medications were contributors to the prediction. Our model was also able to capture the geospatial heterogeneity of ACSC risk in Ontario, and especially the elevated risk in rural and marginalised regions. CONCLUSIONS: This study aimed to predict the 1-year risk of hospitalisation from ambulatory-care sensitive conditions in seniors aged 65-74 years old with a single, large-scale machine learning model. The model shows the potential to inform population health planning and interventions to reduce the burden of ACSC-related hospitalisations.


Assuntos
Condições Sensíveis à Atenção Primária , Saúde da População , Idoso , Estudos de Coortes , Hospitalização , Humanos , Aprendizado de Máquina , Ontário/epidemiologia , Estudos Retrospectivos
3.
JAMA Netw Open ; 4(5): e2111315, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34032855

RESUMO

Importance: Systems-level barriers to diabetes care could be improved with population health planning tools that accurately discriminate between high- and low-risk groups to guide investments and targeted interventions. Objective: To develop and validate a population-level machine learning model for predicting type 2 diabetes 5 years before diabetes onset using administrative health data. Design, Setting, and Participants: This decision analytical model study used linked administrative health data from the diverse, single-payer health system in Ontario, Canada, between January 1, 2006, and December 31, 2016. A gradient boosting decision tree model was trained on data from 1 657 395 patients, validated on 243 442 patients, and tested on 236 506 patients. Costs associated with each patient were estimated using a validated costing algorithm. Data were analyzed from January 1, 2006, to December 31, 2016. Exposures: A random sample of 2 137 343 residents of Ontario without type 2 diabetes was obtained at study start time. More than 300 features from data sets capturing demographic information, laboratory measurements, drug benefits, health care system interactions, social determinants of health, and ambulatory care and hospitalization records were compiled over 2-year patient medical histories to generate quarterly predictions. Main Outcomes and Measures: Discrimination was assessed using the area under the receiver operating characteristic curve statistic, and calibration was assessed visually using calibration plots. Feature contribution was assessed with Shapley values. Costs were estimated in 2020 US dollars. Results: This study trained a gradient boosting decision tree model on data from 1 657 395 patients (12 900 257 instances; 6 666 662 women [51.7%]). The developed model achieved a test area under the curve of 80.26 (range, 80.21-80.29), demonstrated good calibration, and was robust to sex, immigration status, area-level marginalization with regard to material deprivation and race/ethnicity, and low contact with the health care system. The top 5% of patients predicted as high risk by the model represented 26% of the total annual diabetes cost in Ontario. Conclusions and Relevance: In this decision analytical model study, a machine learning model approach accurately predicted the incidence of diabetes in the population using routinely collected health administrative data. These results suggest that the model could be used to inform decision-making for population health planning and diabetes prevention.


Assuntos
Idade de Início , Algoritmos , Tomada de Decisões Assistida por Computador , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/fisiopatologia , Previsões/métodos , Aprendizado de Máquina , Medição de Risco/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Registros Eletrônicos de Saúde/estatística & dados numéricos , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Ontário/epidemiologia , Estudos Retrospectivos , Adulto Jovem
4.
NPJ Digit Med ; 4(1): 24, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580109

RESUMO

Across jurisdictions, government and health insurance providers hold a large amount of data from patient interactions with the healthcare system. We aimed to develop a machine learning-based model for predicting adverse outcomes due to diabetes complications using administrative health data from the single-payer health system in Ontario, Canada. A Gradient Boosting Decision Tree model was trained on data from 1,029,366 patients, validated on 272,864 patients, and tested on 265,406 patients. Discrimination was assessed using the AUC statistic and calibration was assessed visually using calibration plots overall and across population subgroups. Our model predicting three-year risk of adverse outcomes due to diabetes complications (hyper/hypoglycemia, tissue infection, retinopathy, cardiovascular events, amputation) included 700 features from multiple diverse data sources and had strong discrimination (average test AUC = 77.7, range 77.7-77.9). Through the design and validation of a high-performance model to predict diabetes complications adverse outcomes at the population level, we demonstrate the potential of machine learning and administrative health data to inform health planning and healthcare resource allocation for diabetes management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...