Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Automat Contr ; 66(6): 2709-2723, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34219797

RESUMO

In this paper we address the problem of inferring direct influences in social networks from partial samples of a class of opinion dynamics. The interest is motivated by the study of several complex systems arising in social sciences, where a population of agents interacts according to a communication graph. These dynamics over networks often exhibit an oscillatory behavior, given the stochastic effects or the random nature of the local interactions process. Inspired by recent results on estimation of vector autoregressive processes, we propose a method to estimate the social network topology and the strength of the interconnections starting from partial observations of the interactions, when the whole sample path cannot be observed due to limitations of the observation process. Besides the design of the method, our main contributions include a rigorous proof of the convergence of the proposed estimators and the evaluation of the performance in terms of complexity and number of sample. Extensive simulations on randomly generated networks show the effectiveness of the proposed technique.

2.
PLoS One ; 15(9): e0238481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32871583

RESUMO

Inspired by the increasing attention of the scientific community towards the understanding of human relationships and actions in social sciences, in this paper we address the problem of inferring from voting data the hidden influence on individuals from competing ideology groups. As a case study, we present an analysis of the closeness of members of the Italian Senate to political parties during the XVII Legislature. The proposed approach is aimed at automatic extraction of the relevant information by disentangling the actual influences from noise, via a two step procedure. First, a sparse principal component projection is performed on the standardized voting data. Then, the projected data is combined with a generative mixture model, and an information theoretic measure, which we refer to as Political Data-aNalytic Affinity (Political DNA), is finally derived. We show that the definition of this new affinity measure, together with suitable visualization tools for displaying the results of analysis, allows a better understanding and interpretability of the relationships among political groups.


Assuntos
Influência dos Pares , Política , Previsões , Humanos , Registros , Inquéritos e Questionários , Pesos e Medidas/normas
3.
EURASIP J Adv Signal Process ; 2018(1): 56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956656

RESUMO

The aim of this paper is to develop strategies to estimate the sparsity degree of a signal from compressive projections, without the burden of recovery. We consider both the noise-free and the noisy settings, and we show how to extend the proposed framework to the case of non-exactly sparse signals. The proposed method employs γ-sparsified random matrices and is based on a maximum likelihood (ML) approach, exploiting the property that the acquired measurements are distributed according to a mixture model whose parameters depend on the signal sparsity. In the presence of noise, given the complexity of ML estimation, the probability model is approximated with a two-component Gaussian mixture (2-GMM), which can be easily learned via expectation-maximization. Besides the design of the method, this paper makes two novel contributions. First, in the absence of noise, sufficient conditions on the number of measurements are provided for almost sure exact estimation in different regimes of behavior, defined by the scaling of the measurements sparsity γ and the signal sparsity. In the presence of noise, our second contribution is to prove that the 2-GMM approximation is accurate in the large system limit for a proper choice of γ parameter. Simulations validate our predictions and show that the proposed algorithms outperform the state-of-the-art methods for sparsity estimation. Finally, the estimation strategy is applied to non-exactly sparse signals. The results are very encouraging, suggesting further extension to more general frameworks.

4.
EURASIP J Adv Signal Process ; 2018(1): 46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30996728

RESUMO

In this paper, we propose a new method for support detection and estimation of sparse and approximately sparse signals from compressed measurements. Using a double Laplace mixture model as the parametric representation of the signal coefficients, the problem is formulated as a weighted ℓ 1 minimization. Then, we introduce a new family of iterative shrinkage-thresholding algorithms based on double Laplace mixture models. They preserve the computational simplicity of classical ones and improve iterative estimation by incorporating soft support detection. In particular, at each iteration, by learning the components that are likely to be nonzero from the current MAP signal estimate, the shrinkage-thresholding step is adaptively tuned and optimized. Unlike other adaptive methods, we are able to prove, under suitable conditions, the convergence of the proposed methods to a local minimum of the weighted ℓ 1 minimization. Moreover, we also provide an upper bound on the reconstruction error. Finally, we show through numerical experiments that the proposed methods outperform classical shrinkage-thresholding in terms of rate of convergence, accuracy, and of sparsity-undersampling trade-off.

5.
IEEE Trans Image Process ; 26(6): 2656-2668, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28333629

RESUMO

In this paper, we introduce new gradient-based methods for image recovery from a small collection of spectral coefficients of the Fourier transform, which is of particular interest for several scanning technologies, such as magnetic resonance imaging. Since gradients of a medical image are much more sparse or compressible than the corresponding image, classical l1 -minimization methods have been used to recover these relative differences. The image values can then be obtained by integration algorithms imposing boundary constraints. Compared with classical gradient recovery methods, we propose two new techniques that improve reconstruction. First, we cast the gradient recovery problem as a compressed sensing problem taking into account that the curl of the gradient field should be zero. Second, inspired by the emerging field of signal processing on graphs, we formulate the gradient recovery problem as an inverse problem on graphs. Iteratively reweighted l1 recovery methods are proposed to recover these relative differences and the structure of the similarity graph. Once the gradient field is estimated, the image is recovered from the compressed Fourier measurements using least squares estimation. Numerical experiments show that the proposed approach outperforms the state-of-the-art image recovery methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...