Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 5(11): 3533-3539, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33111519

RESUMO

Nanopores hold great potential for the analysis of complex biological molecules at the single-entity level. One particularly interesting macromolecular machine is the ribosome, responsible for translating mRNAs into proteins. In this study, we use a solid-state nanopore to fingerprint 80S ribosomes and polysomes from a human neuronal cell line andDrosophila melanogaster cultured cells and ovaries. Specifically, we show that the peak amplitude and dwell time characteristics of 80S ribosomes are distinct from polysomes and can be used to discriminate ribosomes from polysomes in mixed samples. Moreover, we are able to distinguish large polysomes, containing more than seven ribosomes, from those containing two to three ribosomes, and demonstrate a correlation between polysome size and peak amplitude. This study highlights the application of solid-state nanopores as a rapid analytical tool for the detection and characterization of ribosomal complexes.


Assuntos
Nanoporos , Humanos , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
2.
Nat Commun ; 11(1): 4384, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873796

RESUMO

The ability to detect low concentrations of biomarkers in patient samples is one of the cornerstones of modern healthcare. In general, biosensing approaches are based on measuring signals resulting from the interaction of a large ensemble of molecules with the sensor. Here, we report a biosensor platform using DNA origami featuring a central cavity with a target-specific DNA aptamer coupled with a nanopore read-out to enable individual biomarker detection. We show that the modulation of the ion current through the nanopore upon the DNA origami translocation strongly depends on the presence of the biomarker in the cavity. We exploit this to generate a biosensing platform with a limit of detection of 3 nM and capable of the detection of human C-reactive protein (CRP) in clinically relevant fluids. Future development of this approach may enable multiplexed biomarker detection by using ribbons of DNA origami with integrated barcoding.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , DNA/química , Nanoestruturas/química , Imagem Individual de Molécula/instrumentação , Biomarcadores/análise , Proteína C-Reativa/análise , Desenho de Equipamento , Humanos , Limite de Detecção , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...