Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118538, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406494

RESUMO

The Russo-Ukrainian war has highlighted concerns regarding the European Union's (EU) energy security, given its heavy dependence on Russian natural gas for electricity and heating. The RePowerEU initiative addresses this challenge by targeting a significant increase in biomethane production (up to 35 billion m3 by 2030) to replace natural gas, aligning with the EU methane strategy's emission reduction and air quality improvement goals. However, the use of energy crops as biogas feedstock has raised land-use concerns, necessitating a policy shift towards alternative sources such as agro-residues, livestock manure, and sewage sludge. This study investigates the environmental impacts of using roadside grass clippings (RG) as an alternative feedstock for biogas production, focusing on selected regions in Northwest Europe (Belgium, Netherlands). The aim is to evaluate the environmental performance of RG as a mono- or co-substrate for biogas production, comparing it to the current practice of composting. Additionally, the study assesses the environmental impacts associated with biogas end-use in these regions. The results indicate that co-digestion of RG with pig manure offers a more environmentally friendly alternative compared to mono-digestion of RG or the existing composting practice. This finding is primarily attributed to the avoided emissions resulting from conventional pig manure management. Furthermore, in terms of climate change impacts concerning biogas end-use, the study identifies that combined heat and power (CHP) systems are preferable to biomethane recovery in regions with a natural gas-based electricity mix. However, for reducing fossil resource use, biomethane recovery emerges as the preferred option. By providing insights into the environmental performance of RG as a biogas feedstock and evaluating the impacts of different biogas end-use options, this study offers insights to policymakers for the development of sustainable energy strategies in Northwest Europe.


Assuntos
Biocombustíveis , Poaceae , Animais , Suínos , Esterco , Gás Natural , Europa (Continente) , Metano
2.
Sci Total Environ ; 889: 163956, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149194

RESUMO

Life cycle assessment (LCA) was applied to evaluate duckweed ponds and constructed wetlands as polishing steps in pig manure liquid fraction treatment. Using nitrification-denitrification (NDN) of the liquid fraction as the starting point, the LCA compared direct land application of the NDN effluent with different combinations of duckweed ponds, constructed wetlands and discharge into natural waterbodies. Duckweed ponds and constructed wetlands are viewed as a viable tertiary treatment option and potential remedy for nutrient imbalances in areas of intense livestock farming, such as in Belgium. As the effluent stays in the duckweed pond, settling and microbial degradation reduce the remaining phosphorous and nitrogen concentrations. Combined with duckweed and/or wetland plants that take up nutrients in their plant body, this approach can reduce over-fertilisation and prevent excessive nitrogen losses to aquatic environments. In addition, duckweed could serve as an alternative livestock feed and replace imports of protein destined for animal consumption. The environmental performance of the overall treatment systems studied was found to depend greatly on assumptions about the possible avoidance of potassium fertiliser production through the field application of effluents. If it is assumed that the potassium contained in the effluent replaces mineral fertiliser, direct field application of the NDN effluent performed best. If the application of NDN effluent does not lead to mineral fertiliser savings or if the replaced K fertiliser is of low grade, duckweed ponds seem to be a viable additional step in the manure treatment chain. Consequently, whenever background concentrations of N and/or P in fields allow for effluent application and potassium fertiliser substitution, direct application should be favoured over further treatment. If direct land application of the NDN effluent is not an option, the focus should be on long residence times in duckweed ponds to allow for maximum nutrient uptake and feed production.


Assuntos
Araceae , Lagoas , Animais , Suínos , Áreas Alagadas , Esterco , Eliminação de Resíduos Líquidos , Fertilizantes , Plantas/metabolismo , Araceae/metabolismo , Nitrogênio/metabolismo , Estágios do Ciclo de Vida
3.
Resour Conserv Recycl ; 182: 106325, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35782309

RESUMO

Phosphate rock (PR) has been designated as a Critical Raw Material in the European Union (EU). This has led to increased emphasis on alternative P recovery (APR) from secondary streams like wastewater sludge (WWS). However, WWS end-use is a contentious topic, and EU member states prefer different end-use pathways (land application/incineration/valorisation in cement kilns). Previous Life Cycle Assessments (LCA) on APRs from WWS reached contrasting conclusions; while most considered WWS as waste and highlighted a net benefit relative to PR mining and beneficiation, others viewed WWS as a resource and highlighted a net burden of the treatment. We used a combined functional unit (that views WWS from a waste as well as a resource perspective) and applied it on a Flemish wastewater treatment plant (WWTP) with struvite recovery as APR technology. Firstly, a retrospective comparison was performed to measure the WWTP performance before and after struvite recovery and the analysis was complemented by uncertainty and global sensitivity analyses. The results showed struvite recovery provides marginal environmental benefits due to improved WWS dewatering and reduced polymer use. Secondly, a prospective LCA approach was performed to reflect policy changes regarding WWS end-use options in Flanders. Results indicated complete mono-incineration of WWS, ash processing to recover P and the subsequent land application appears to be less sustainable in terms of climate change, human toxicity, and terrestrial acidification relative to the status quo, i.e., co-incineration with municipal solid waste and valorisation at cement kilns. Impacts on fossil depletion, however, favour mono-incineration over the status quo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...