Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 43, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649998

RESUMO

Dengue viruses (DENV) are positive-stranded RNA viruses belonging to the Flaviviridae family. DENV is the causative agent of dengue, the most rapidly spreading viral disease transmitted by mosquitoes. Each year, millions of people contract the virus through bites from infected female mosquitoes of the Aedes species. In the majority of individuals, the infection is asymptomatic, and the immune system successfully manages to control virus replication within a few days. Symptomatic individuals may present with a mild fever (Dengue fever or DF) that may or may not progress to a more critical disease termed Dengue hemorrhagic fever (DHF) or the fatal Dengue shock syndrome (DSS). In the absence of a universally accepted prophylactic vaccine or therapeutic drug, treatment is mostly restricted to supportive measures. Similar to many other viruses that induce acute illness, DENV has developed several ways to modulate host metabolism to create an environment conducive to genome replication and the dissemination of viral progeny. To search for new therapeutic options, understanding the underlying host-virus regulatory system involved in various biological processes of the viral life cycle is essential. This review aims to summarize the complex interaction between DENV and the host cellular machinery, comprising regulatory mechanisms at various molecular levels such as epigenetic modulation of the host genome, transcription of host genes, translation of viral and host mRNAs, post-transcriptional regulation of the host transcriptome, post-translational regulation of viral proteins, and pathways involved in protein degradation.


Assuntos
Vírus da Dengue , Dengue , Vírus da Dengue/fisiologia , Vírus da Dengue/patogenicidade , Vírus da Dengue/genética , Humanos , Dengue/virologia , Animais , Interações Hospedeiro-Patógeno , Replicação Viral
2.
Rev Med Virol ; 33(6): e2481, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758688

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) emerged in December 2019, causing a range of respiratory infections from mild to severe. This resulted in the ongoing global COVID-19 pandemic, which has had a significant impact on public health. The World Health Organization declared COVID-19 as a global pandemic in March 2020. Viruses are intracellular pathogens that rely on the host's machinery to establish a successful infection. They exploit the gene expression machinery of host cells to facilitate their own replication. Gaining a better understanding of gene expression modulation in SARS-CoV2 is crucial for designing and developing effective antiviral strategies. Efforts are currently underway to understand the molecular-level interaction between the host and the pathogen. In this review, we describe how SARS-CoV2 infection modulates gene expression by interfering with cellular processes, including transcription, post-transcription, translation, post-translation, epigenetic modifications as well as processing and degradation pathways. Additionally, we emphasise the therapeutic implications of these findings in the development of new therapies to treat SARS-CoV2 infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , RNA Viral
3.
3 Biotech ; 11(9): 410, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34471592

RESUMO

Choline oxidase catalyzes the oxidation of choline to glycine betaine via betaine aldehyde in glycine betaine biosynthesis and betaine acts as an osmolyte. Choline oxidase has attracted a great deal of attention because of its wide application in clinical and its potential use in enzymatic betaine production. Therefore, the development of efficient methods for overexpression of choline oxidase will be very valuable. In the present study, the choline oxidase gene was amplified from a newly isolated Gram-positive soil Arthrobacter globiformis strain HYJE003 and was cloned into a pET expression vector. Furthermore, the culture conditions were optimized for overexpression of cloned choline oxidase gene in different hosts for periplasmic expression of the enzyme. Expression host system Rosetta-gami2(DE3)pLysS yielded more cell-free protein and 20 fold higher active enzyme compared to any other reported studies. Terrific Broth media were found to be yielding the highest cell biomass, by applying the optimized culture conditions and purification strategy 20,902 U of choline oxidase was produced with a specific activity of 95 U/mg. The optimum pH and temperature for the enzyme activity were found to be 7 and 37 °C, respectively. Finally, we have demonstrated efficient bioconversion of betaine using overexpressed and purified choline oxidase enzyme. The enzymatically produced betaine was estimated by the formation of betaine reineckate and we were able to produce 0.83 molar of betaine from one molar of choline chloride. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02960-z.

4.
Mol Ther Nucleic Acids ; 26: 161-173, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34513302

RESUMO

Hundreds of tRNA genes and pseudogenes are encoded by the human genome. tRNAs are the second most abundant type of RNA in the cell. Advancement in deep-sequencing technologies have revealed the presence of abundant expression of functional tRNA-derived RNA fragments (tRFs). They are either generated from precursor (pre-)tRNA or mature tRNA. They have been found to play crucial regulatory roles during different pathological conditions. Herein, we briefly summarize the discovery and recent advances in deciphering the regulatory role played by tRFs in the pathophysiology of different human diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...