Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-11088711

RESUMO

Capillary condensation hysteresis in nanopores is studied by Monte Carlo simulations and the nonlocal density functional theory. Comparing the theoretical results with the experimental data on low temperature sorption of nitrogen and argon in cylindrical channels of mesoporous siliceous molecular sieves of MCM-41 type, we have revealed four qualitatively different sorption regimes depending on the temperature and pore size. As the pore size increases at a given temperature, or as the temperature decreases at a given pore size, the following regimes are consequently observed: volume filling without phase separation, reversible stepwise capillary condensation, irreversible capillary condensation with developing hysteresis, and capillary condensation with developed hysteresis. We show that, in the regime of developed hysteresis (pores wider than 5 nm in the case of nitrogen sorption at 77 K), condensation occurs spontaneously at the vaporlike spinodal while desorption takes place at the equilibrium. A quantitative agreement is found between the modeling results and the experimental hysteresis loops formed by the adsorption-desorption isotherms. The results obtained provide a better understanding of the general behavior of confined fluids and the specifics of sorption and phase transitions in nanomaterials.

2.
J Colloid Interface Sci ; 207(1): 159-169, 1998 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-9778403

RESUMO

Methods of nonlocal density functional theory (NLDFT), proposed recently for predictions of adsorption equilibrium and calculations of pore size distributions in micro- and mesoporous materials, were tested on reference MCM-41 materials. Five newly synthesized MCM-41 adsorbents with presumably uniform pore channels varying from 32 to 45 Å were characterized by X-ray diffraction (XRD), nitrogen adsorption at 77 K, and argon adsorption at 77 and 87 K. New sets of intermolecular interaction parameters of the NLDFT model for N2 and Ar adsorption on MCM-41 were determined. The parameters were specified to reproduce the bulk liquid-gas equilibrium densities and pressures, liquid-gas interfacial tensions, and standard adsorption isotherms on nonporous surfaces in the multilayer adsorption region. The pore size distributions calculated from the desorption branches of the experimental isotherms measured at three different temperatures were consistent with each other. Comparison of the NLDFT-calculated pore sizes with XRD data showed that the thickness of pore walls in the MCM-41 samples under consideration varied from ca. 6 to 12 Å. We found no correlation between the pore size and the pore wall thickness. The results obtained support the NLDFT model as a suitable tool for characterizing nanoporous materials and predicting adsorption equilibrium. The MCM-41 samples studied can be used as references for adsorption measurements. Copyright 1998 Academic Press.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...