Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 259(Pt A): 31-38, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26926807

RESUMO

In plants, sulfur is an essential nutrient that must be converted into usable metabolic forms for the formation of sulfur-containing amino acids and peptides (primary route) and for the modification of diverse metabolites (secondary route). In plants, the fate of assimilated sulfate depends on the three enzymes - ATP sulfurylase, adenosine-5'-phosphate (APS) reductase, and APS kinase - that form a branchpoint in the pathway. ATP sulfurylase catalyzes the formation of the critical intermediate APS, which can either be used in the primary assimilatory route or be phosphorylated to 3'-phospho-APS (PAPS) for a variety of sulfation reactions. Recent biochemical and structural studies of the branchpoint enzymes in plant sulfur metabolism suggest that redox-regulation may control sulfur partitioning between primary and secondary routes. Disulfide-based redox switches differentially affect APS reductase and APS kinase. Oxidative conditions that promote disulfide formation increase the activity of APS reductase and decreases PAPS production by APS kinase. Here we review recent work on the ATP sulfurylase and APS kinase from plants that provide new insight on the regulation of PAPS formation, the structural evolution of these enzymes in different organisms, and redox-control of this key branchpoint in plant sulfur metabolism.


Assuntos
Redes e Vias Metabólicas , Plantas/metabolismo , Sulfatos/metabolismo , Oxirredução , Proteínas de Plantas/metabolismo , Plantas/enzimologia
2.
FEMS Microbiol Lett ; 358(2): 145-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24810258

RESUMO

Spores of Bacillus subtilis are dormant cell types that are formed when the bacterium encounters starvation conditions. Spores are encased in a shell, termed the coat, which is composed of approximately seventy different proteins and protects the spore's genetic material from environmental insults. The structural component of the basement layer of the coat is an exceptional cytoskeletal protein, termed SpoIVA, which binds and hydrolyzes ATP. ATP hydrolysis is utilized to drive a conformational change in SpoIVA that leads to its irreversible self-assembly into a static polymer in vitro. Here, we characterize the middle domain of SpoIVA, the predicted secondary structure of which resembles the chemotaxis protein CheX but, unlike CheX, does not harbor residues required for phosphatase activity. Disruptions in this domain did not abolish ATP hydrolysis, but resulted in mislocalization of the protein and reduction in sporulation efficiency in vivo. In vitro, disruptions in this domain prevented the ATP hydrolysis-driven conformational change in SpoIVA required for polymerization and led to the aggregation of SpoIVA into particles that did not form filaments. We propose a model in which SpoIVA initially assumes a conformation in which it inhibits its own aggregation into particles, and that ATP hydrolysis remodels the protein so that it assumes a polymerization-competent conformation.


Assuntos
Bacillus subtilis/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Multimerização Proteica , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Análise Mutacional de DNA , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Esporos Bacterianos/genética
3.
J Biol Chem ; 289(15): 10919-10929, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24584934

RESUMO

Enzymes of the sulfur assimilation pathway are potential targets for improving nutrient content and environmental stress responses in plants. The committed step in this pathway is catalyzed by ATP sulfurylase, which synthesizes adenosine 5'-phosphosulfate (APS) from sulfate and ATP. To better understand the molecular basis of this energetically unfavorable reaction, the x-ray crystal structure of ATP sulfurylase isoform 1 from soybean (Glycine max ATP sulfurylase) in complex with APS was determined. This structure revealed several highly conserved substrate-binding motifs in the active site and a distinct dimerization interface compared with other ATP sulfurylases but was similar to mammalian 3'-phosphoadenosine 5'-phosphosulfate synthetase. Steady-state kinetic analysis of 20 G. max ATP sulfurylase point mutants suggests a reaction mechanism in which nucleophilic attack by sulfate on the α-phosphate of ATP involves transition state stabilization by Arg-248, Asn-249, His-255, and Arg-349. The structure and kinetic analysis suggest that ATP sulfurylase overcomes the energetic barrier of APS synthesis by distorting nucleotide structure and identifies critical residues for catalysis. Mutations that alter sulfate assimilation in Arabidopsis were mapped to the structure, which provides a molecular basis for understanding their effects on the sulfur assimilation pathway.


Assuntos
Adenosina Fosfossulfato/química , Glycine max/enzimologia , Sulfato Adenililtransferase/química , Enxofre/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Haplótipos , Ligação de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
4.
Biosci Rep ; 33(4)2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23789618

RESUMO

In plants, sulfur must be obtained from the environment and assimilated into usable forms for metabolism. ATP sulfurylase catalyses the thermodynamically unfavourable formation of a mixed phosphosulfate anhydride in APS (adenosine 5'-phosphosulfate) from ATP and sulfate as the first committed step of sulfur assimilation in plants. In contrast to the multi-functional, allosterically regulated ATP sulfurylases from bacteria, fungi and mammals, the plant enzyme functions as a mono-functional, non-allosteric homodimer. Owing to these differences, here we examine the kinetic mechanism of soybean ATP sulfurylase [GmATPS1 (Glycine max (soybean) ATP sulfurylase isoform 1)]. For the forward reaction (APS synthesis), initial velocity methods indicate a single-displacement mechanism. Dead-end inhibition studies with chlorate showed competitive inhibition versus sulfate and non-competitive inhibition versus APS. Initial velocity studies of the reverse reaction (ATP synthesis) demonstrate a sequential mechanism with global fitting analysis suggesting an ordered binding of substrates. ITC (isothermal titration calorimetry) showed tight binding of APS to GmATPS1. In contrast, binding of PPi (pyrophosphate) to GmATPS1 was not detected, although titration of the E•APS complex with PPi in the absence of magnesium displayed ternary complex formation. These results suggest a kinetic mechanism in which ATP and APS are the first substrates bound in the forward and reverse reactions, respectively.


Assuntos
Glycine max/enzimologia , Proteínas de Plantas/química , Sulfato Adenililtransferase/química , Adenosina Fosfossulfato/química , Trifosfato de Adenosina/química , Biocatálise , Cloratos/química , Cinética , Proteínas de Plantas/antagonistas & inibidores , Sulfato Adenililtransferase/antagonistas & inibidores , Sulfatos/química
5.
J Biol Chem ; 288(9): 6107-15, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23322773

RESUMO

Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the phosphorylation of adenosine 5'-phosphosulfate (APS) to 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Crystallographic studies of APSK from Arabidopsis thaliana revealed the presence of a regulatory intersubunit disulfide bond (Cys(86)-Cys(119)). The reduced enzyme displayed improved catalytic efficiency and decreased effectiveness of substrate inhibition by APS compared with the oxidized form. Here we examine the effect of disulfide formation and the role of the N-terminal domain on nucleotide binding using isothermal titration calorimetry (ITC) and steady-state kinetics. Formation of the disulfide bond in A. thaliana APSK (AtAPSK) inverts the binding affinities at the ATP/ADP and APS/PAPS sites from those observed in the reduced enzyme, consistent with initial binding of APS as inhibitory, and suggests a role for the N-terminal domain in guiding nucleotide binding order. To test this, an N-terminal truncation variant (AtAPSKΔ96) was generated. The resulting protein was completely insensitive to substrate inhibition by APS. ITC analysis of AtAPSKΔ96 showed decreased affinity for APS binding, although the N-terminal domain does not directly interact with this ligand. Moreover, AtAPSKΔ96 displayed reduced affinity for ADP, which corresponds to a loss of substrate inhibition by formation of an E·ADP·APS dead end complex. Examination of the AtAPSK crystal structure suggested Arg(93) as important for positioning of the N-terminal domain. ITC and kinetic analysis of the R93A mutant also showed a complete loss of substrate inhibition and altered nucleotide binding affinities, which mimics the effect of the N-terminal deletion. These results show how thiol-linked changes in AtAPSK alter the energetics of binding equilibria to control its activity.


Assuntos
Arabidopsis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Difosfato de Adenosina/química , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Catálise , Cinética , Oxirredução , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
6.
J Am Chem Soc ; 134(41): 16979-82, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23025382

RESUMO

Adenosine-5'-phosphosulfate kinase (APSK) catalyzes the phosphorylation of adenosine-5'-phospho-sulfate (APS) to 3'-phospho-APS (PAPS). In plants, this enzymatic activity is biochemically regulated through an intersubunit disulfide bond between Cys86 and Cys119 in the N-terminal loop of APSK. To examine if O((3)P) generated by the photodeoxygenation of 2,8-dihydroxymethyldibenzothiophene S-oxide could specifically oxidize APSK at its regulatory site, APSK was irradiated in the presence of 2,8-dihydroxymethyldibenzothiophene S-oxide. Near-quantitative alteration of APSK from the enzymatically active monomeric form to the inhibited dimeric form was achieved. The photoinduced increase of dimeric APSK was strongly implicated to arise from the formation of the Cys86-Cys119 disulfide bond.


Assuntos
Oxigênio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Processos Fotoquímicos
7.
J Biol Chem ; 287(36): 30385-94, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22810229

RESUMO

Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the ATP-dependent synthesis of adenosine 3'-phosphate 5'-phosphosulfate (PAPS), which is an essential metabolite for sulfur assimilation in prokaryotes and eukaryotes. Using APSK from Arabidopsis thaliana, we examine the energetics of nucleotide binary and ternary complex formation and probe active site features that coordinate the order of ligand addition. Calorimetric analysis shows that binding can occur first at either nucleotide site, but that initial interaction at the ATP/ADP site was favored and enhanced affinity for APS in the second site by 50-fold. The thermodynamics of the two possible binding models (i.e. ATP first versus APS first) differs and implies that active site structural changes guide the order of nucleotide addition. The ligand binding analysis also supports an earlier suggestion of intermolecular interactions in the dimeric APSK structure. Crystallographic, site-directed mutagenesis, and energetic analyses of oxyanion recognition by the P-loop in the ATP/ADP binding site and the role of Asp(136), which bridges the ATP/ADP and APS/PAPS binding sites, suggest how the ordered nucleotide binding sequence and structural changes are dynamically coordinated for catalysis.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Arabidopsis/enzimologia , Modelos Químicos , Fosfotransferases (Aceptor do Grupo Álcool)/química , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Catálise , Domínio Catalítico , Cristalografia por Raios X , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Enxofre/química , Enxofre/metabolismo
8.
Nat Prod Rep ; 29(10): 1138-52, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22610545

RESUMO

Sulfur is an essential element that must be assimilated by all organisms; however, the metabolic pathways for this task vary significantly, even among individual genera of bacteria, and especially so among eukaryotes. While all organisms require sulfurous amino acids, plants require specialized sulfur-containing metabolites, such as glucosinolates and allylsulfur compounds, for protection from herbivory and microbial infection; and the synthesis of specialized peptides (i.e., glutathione and phytochelatins) for protection against reactive oxygen species and exposure to transition metals, such as cadmium. In order to provide the complex array of sulfur-containing metabolites essential to plant viability, flux through the sulfur assimilatory pathway must be tightly regulated by controlling enzymatic activity. The X-ray crystal structures of several primary sulfur assimilatory enzymes, complemented by kinetics, have revealed mechanisms of enzymatic regulation (i.e., via redox state and protein-protein interaction) in these biosynthetic pathways, in addition to the chemical mechanisms of catalysis. This review summarizes the state of our structural knowledge of primary and secondary sulfur assimilatory enzymes from plants.


Assuntos
Plantas/enzimologia , Plantas/metabolismo , Enxofre/metabolismo , Estrutura Molecular , Peptídeos/síntese química , Conformação Proteica
9.
J Biol Chem ; 287(19): 15251-62, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22411988

RESUMO

Capping protein (CP) controls the polymerization of actin filaments by capping their barbed ends. In lamellipodia, CP dissociates from the actin cytoskeleton rapidly, suggesting the possible existence of an uncapping factor, for which the protein CARMIL (capping protein, Arp2/3 and myosin-I linker) is a candidate. CARMIL binds to CP via two motifs. One, the CP interaction (CPI) motif, is found in a number of unrelated proteins; the other motif is unique to CARMILs, the CARMIL-specific interaction motif. A 115-aa CARMIL fragment of CARMIL with both motifs, termed the CP-binding region (CBR), binds to CP with high affinity, inhibits capping, and causes uncapping. We wanted to understand the structural basis for this function. We used a collection of mutants affecting the actin-binding surface of CP to test the possibility of a steric-blocking model, which remained open because a region of CBR was not resolved in the CBR/CP co-crystal structure. The CP actin-binding mutants bound CBR normally. In addition, a CBR mutant with all residues of the unresolved region changed showed nearly normal binding to CP. Having ruled out a steric blocking model, we tested an allosteric model with molecular dynamics. We found that CBR binding induces changes in the conformation of the actin-binding surface of CP. In addition, ∼30-aa truncations on the actin-binding surface of CP decreased the affinity of CBR for CP. Thus, CARMIL promotes uncapping by binding to a freely accessible site on CP bound to a filament barbed end and inducing a change in the conformation of the actin-binding surface of CP.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/genética , Citoesqueleto de Actina/química , Actinas/química , Actinas/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Proteínas dos Microfilamentos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
10.
FEMS Microbiol Lett ; 326(2): 168-72, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22092591

RESUMO

Proteins of the YgfZ family occur in all domains of life and are characterized by the conserved dodecapeptide motif KGC[Y/F]-x-GQE-x(3) -[R/K]. YgfZ proteins are known to participate in assembly or repair of iron/sulphur clusters, and to require folate for biological activity, but their mechanism of action is unknown. To assess the importance of individual residues in the conserved motif, Escherichia coli Ygf Z was expressed from a plasmid in a ΔygfZ strain and subjected to alanine-scanning mutagenesis. The impacts on YgfZ functionality were evaluated by assays of growth and of the in vivo activity of the iron/sulphur enzyme MiaB, which modifies tRNA. By these criteria, the motif's tyrosine residue (Y229) had a detectable influence but only the cysteine residue (C228) was critical, for only the C228A mutant failed to complement the growth and MiaB activity phenotypes of the ΔygfZ strain. Immunoblots confirmed that the latter result was not simply because of a low level of the C228A mutant protein. Collectively, these data demonstrate a pivotal role for the Ygf Z motif's cysteine residue and a subsidiary one for the adjacent tyrosine, and help formulate a hypothesis about the folate requirement of Ygf Z proteins.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Motivos de Aminoácidos , Sequência Conservada , Análise Mutacional de DNA , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Expressão Gênica , Teste de Complementação Genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Plasmídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfurtransferases/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(1): 309-14, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22184237

RESUMO

Adenosine-5'-phosphosulfate (APS) kinase (APSK) catalyzes the phosphorylation of APS to 3'-phospho-APS (PAPS). In Arabidopsis thaliana, APSK is essential for reproductive viability and competes with APS reductase to partition sulfate between the primary and secondary branches of the sulfur assimilatory pathway; however, the biochemical regulation of APSK is poorly understood. The 1.8-Å resolution crystal structure of APSR from A. thaliana (AtAPSK) in complex with ß,γ-imidoadenosine-5'-triphosphate, Mg(2+), and APS provides a view of the Michaelis complex for this enzyme and reveals the presence of an intersubunit disulfide bond between Cys86 and Cys119. Functional analysis of AtAPSK demonstrates that reduction of Cys86-Cys119 resulted in a 17-fold higher k(cat)/K(m) and a 15-fold increase in K(i) for substrate inhibition by APS compared with the oxidized enzyme. The C86A/C119A mutant was kinetically similar to the reduced WT enzyme. Gel- and activity-based titrations indicate that the midpoint potential of the disulfide in AtAPSK is comparable to that observed in APS reductase. Both cysteines are invariant among the APSK from plants, but not other organisms, which suggests redox-control as a unique regulatory feature of the plant APSK. Based on structural, functional, and sequence analyses, we propose that the redox-sensitive APSK evolved after bifurcation of the sulfur assimilatory pathway in the green plant lineage and that changes in redox environment resulting from oxidative stresses may affect partitioning of APS into the primary and secondary thiol metabolic routes by having opposing effects on APSK and APS reductase in plants.


Assuntos
Arabidopsis/enzimologia , Evolução Molecular , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Domínio Catalítico , Cisteína/metabolismo , Dissulfetos/metabolismo , Cinética , Redes e Vias Metabólicas , Modelos Moleculares , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Estrutura Secundária de Proteína , Enxofre/metabolismo , Synechocystis/enzimologia
12.
Amino Acids ; 39(4): 963-78, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20364282

RESUMO

Sulfur is an essential plant nutrient and is metabolized into the sulfur-containing amino acids (cysteine and methionine) and into molecules that protect plants against oxidative and environmental stresses. Although studies of thiol metabolism in the model plant Arabidopsis thaliana (thale cress) have expanded our understanding of these dynamic processes, our knowledge of how sulfur is assimilated and metabolized in crop plants, such as soybean (Glycine max), remains limited in comparison. Soybean is a major crop used worldwide for food and animal feed. Although soybeans are protein-rich, they do not contain high levels of the sulfur-containing amino acids, cysteine and methionine. Ultimately, unraveling the fundamental steps and regulation of thiol metabolism in soybean is important for optimizing crop yield and quality. Here we review the pathways from sulfur uptake to glutathione and homoglutathione synthesis in soybean, the potential biotechnology benefits of understanding and modifying these pathways, and how information from the soybean genome may guide the next steps in exploring this biochemical system.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Glycine max/metabolismo , Compostos de Sulfidrila/metabolismo , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Aminoácidos Sulfúricos/biossíntese , Cisteína/biossíntese , Regulação da Expressão Gênica de Plantas , Glutationa/análogos & derivados , Glutationa/biossíntese , Redes e Vias Metabólicas , Metionina/biossíntese , Sementes , Glycine max/genética , Estresse Fisiológico , Enxofre/metabolismo
13.
Mol Plant ; 3(2): 269-79, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20080815

RESUMO

Sulfur is essential for plant growth and development, and the molecular systems for maintaining sulfur and thiol metabolism are tightly controlled. From a biochemical perspective, the regulation of plant thiol metabolism highlights nature's ability to engineer pathways that respond to multiple inputs and cellular demands under a range of conditions. In this review, we focus on the regulatory mechanisms that form the molecular basis of biochemical sulfur sensing in plants by translating the intracellular concentration of sulfur-containing compounds into control of key metabolic steps. These mechanisms range from the simple (substrate availability, thermodynamic properties of reactions, feedback inhibition, and organelle localization) to the elaborate (formation of multienzyme complexes and thiol-based redox switches). Ultimately, the dynamic interplay of these regulatory systems is critical for sensing and maintaining sulfur assimilation and thiol metabolism in plants.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo , Modelos Biológicos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...