Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(2): 108808, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303713

RESUMO

Type I interferons (IFNs) increase the excitability of dorsal root ganglia (DRGs) neurons via MNK-eIF4E signaling to promote pain sensitization in mice. Activation of stimulator of interferon response cGAMP interactor 1 (STING) signaling is pivotal for type I IFN induction. We hypothesized that vinorelbine, a chemotherapeutic and activator of STING, would cause a neuropathic pain-like state in mice via STING signaling in DRG neurons associated with IFN production. Vinorelbine caused tactile allodynia and grimacing in wild-type (WT) mice and increased p-IRF3, type I IFNs, and p-eIF4E in peripheral nerves. Supporting our hypothesis, vinorelbine failed to induce IRF3-IFNs-MNK-eIF4E in StingGt/Gt mice and, subsequently, failed to cause pain. The vinorelbine-elicited increase of p-eIF4E was not observed in Mknk1-/- (MNK1 knockout) mice in peripheral nerves consistent with the attenuated pro-nociceptive effect of vinorelbine in these mice. Our findings show that activation of STING signaling in the periphery causes a neuropathic pain-like state through type I IFN signaling to DRG nociceptors.

2.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333411

RESUMO

Type I interferons (IFNs) increase the excitability of dorsal root ganglion (DRG) neurons via activation of MNK-eIF4E translation signaling to promote pain sensitization in mice. Activation of STING signaling is a key component of type I IFN induction. Manipulation of STING signaling is an active area of investigation in cancer and other therapeutic areas. Vinorelbine is a chemotherapeutic that activates STING and has been shown to cause pain and neuropathy in oncology clinical trials in patients. There are conflicting reports on whether STING signaling promotes or inhibits pain in mice. We hypothesized that vinorelbine would cause a neuropathic pain-like state in mice via STING and signaling pathways in DRG neurons associated with type I IFN induction. Vinorelbine (10 mg/kg, i.v.) induced tactile allodynia and grimacing in WT male and female mice and increased p-IRF3 and type I IFN protein in peripheral nerves. In support of our hypothesis, vinorelbine-mediated pain was absent in male and female StingGt/Gt mice. Vinorelbine also failed to induce IRF3 and type I IFN signaling in these mice. Since type I IFNs engage translational control via MNK1-eIF4E in DRG nociceptors, we assessed vinorelbine-mediated p-eIF4E changes. Vinorelbine increased p-eIF4E in DRG in WT animals but not in StingGt/Gt or Mknk1-/- (MNK1 KO) mice. Consistent with these biochemical findings, vinorelbine had an attenuated pro-nociceptive effect in male and female MNK1 KO mice. Our findings support the conclusion that activation of STING signaling in the peripheral nervous system causes a neuropathic pain-like state that is mediated by type I IFN signaling to DRG nociceptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...