Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 6(13): 10274-82, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24901940

RESUMO

High oxygen permeability and good thermochemical stability of oxygen-transporting membranes (OTMs) are two main requirements concerning the applicability of these devices in chemical processes, such as CO2 capture using the oxyfuel concept or catalytic membrane reactors. In this work, a single-phase perovskite-type membrane Pr0.6Sr0.4Co0.5Fe0.5O3-δ (PSCF) with 0.6-mm thickness was subjected to periodic thermal cycling in the temperature range between 850 and 1000 °C in a 1000-h long-term permeation test with pure CO2 as the sweep gas. The results of this long-term permeation operation revealed a stepwise increase in oxygen permeation values at 1000 °C after each thermal cycle, reaching from 1.38 cm(3) (STP) min(-1) cm(-2) in the first cycle to 1.75 cm(3) (STP) min(-1) cm(-2) in the fourth cycle. Furthermore, the membrane showed very good CO2 stability at 900 °C and above. Despite a partial decrease in oxygen permeation fluxes at 850 °C, a steady state of 0.25 cm(3) (STP) min(-1) cm(-2) was reached and maintained for more than 100 h. The newly developed PSCF membrane also exhibited a higher oxygen permeation flux with He and CO2 sweeping at all measured temperatures compared to a similar La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) membrane.

2.
Chem Commun (Camb) ; 50(19): 2451-4, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24452286

RESUMO

By cobalt-doping of the mixed conducting phase PSFC, a good combination of high CO2 stability and high oxygen permeability is obtained for the 60 wt% Ce(0.9)Pr(0.1)O(2-δ)-40 wt% Pr(0.6)Sr(0.4)Fe(0.5)Co(0.5)O(3-δ) (CP-PSFC) dual phase membrane, which suggests that CP-PSFC is a promising membrane for industrial applications in the oxyfuel process for CO2 capture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...