Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 136: 105523, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257144

RESUMO

This study analyses the influence of the addition of Multi Walled Carbon Nanotubes (MWCNT) on the physical, mechanical, and biological behaviour of Calcium Phosphate (CP) bone scaffolds developed using the robocasting technique for bone regeneration. Three different mass percentages (0.5, 1, and 2 wt%) of MWCNT are added to the CP powder and a slurry is prepared using a CMC binder for printing the scaffolds. The scaffolds were printed in 2 infill ratios, 50 and 100%, and were sintered under an inert atmosphere in a microwave furnace which was then taken for various characterization studies. Physical characterisation studies revealed that the shrinkage rate of scaffolds is very low compared to other additive manufacturing techniques. The incorporation of 0.5 wt% of MWCNT produced the best results in mechanical characterization studies with a compressive strength of 10.38 MPa and 11.89 MPa for 50% and 100% infill ratios respectively. In Vitro Biocompatibility studies also proved that 0.5 wt% MWCNT samples are the most suitable for cell growth while the hemocompatibility tests showed that the samples are blood compatible. . The 100% infill samples fared better than the 50% samples in physical and mechanical properties. The results suggest that the MWCNT incorporated CP scaffolds can be used to treat critical size bone defects.


Assuntos
Nanotubos de Carbono , Engenharia Tecidual , Engenharia Tecidual/métodos , Alicerces Teciduais , Micro-Ondas , Fosfatos de Cálcio , Porosidade , Impressão Tridimensional
2.
ACS Appl Bio Mater ; 4(12): 8129-8158, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35005929

RESUMO

Bio-scaffolds are synthetic entities widely employed in bone and soft-tissue regeneration applications. These bio-scaffolds are applied to the defect site to provide support and favor cell attachment and growth, thereby enhancing the regeneration of the defective site. The progressive research in bio-scaffold fabrication has led to identification of biocompatible and mechanically stable materials. The difficulties in obtaining grafts and expenditure incurred in the transplantation procedures have also been overcome by the implantation of bio-scaffolds. Drugs, cells, growth factors, and biomolecules can be embedded with bio-scaffolds to provide localized treatments. The right choice of materials and fabrication approaches can help in developing bio-scaffolds with required properties. This review mostly focuses on the available materials and bio-scaffold techniques for bone and soft-tissue regeneration application. The first part of this review gives insight into the various classes of biomaterials involved in bio-scaffold fabrication followed by design and simulation techniques. The latter discusses the various additive, subtractive, hybrid, and other improved techniques involved in the development of bio-scaffolds for bone regeneration applications. Techniques involving multimaterial printing and multidimensional printing have also been briefly discussed.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Materiais Biocompatíveis/uso terapêutico , Regeneração Óssea , Impressão Tridimensional , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...