Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 19(12): 5100-5116, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124866

RESUMO

The toxin Plx2A is an important virulence factor of Paenibacillus larvae, the etiological agent of American Foulbrood, the most destructive bacterial disease of honey bees. Biochemical and functional analyses as well as the crystal structure of Plx2A revealed that it belongs to the C3 mono-ADP-ribosylating toxin subgroup. RhoA was identified as the cellular target of Plx2A activity. The kinetic parameters (KM , kcat ) were established for both the transferase and glycohydrolase reactions. When expressed in yeast, Plx2A was cytotoxic for eukaryotic cells and catalytic variants confirmed that the cytotoxicity of Plx2A depends on its enzymatic activity. The crystal structure of Plx2A was solved to 1.65 Å and confirmed that it is a C3-like toxin, although with a new molecular twist, it has a B-domain. A molecular model of the 'active' enzyme conformation in complex with NAD+ was produced by computational methods based on the recent structure of C3bot1 with RhoA. In murine macrophages, Plx2A induced actin cytoskeleton reorganization while in insect cells, vacuolization and the occurrence of bi-nucleated cells was observed. The latter is indicative of an inhibition of cytokinesis. All these cellular effects are consistent with Plx2A inhibiting the activity of RhoA by covalent modification.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Abelhas/microbiologia , Macrófagos/patologia , Paenibacillus larvae/patogenicidade , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Animais , Catálise , Linhagem Celular , Camundongos , Modelos Moleculares , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Virulência/metabolismo
2.
J Biol Chem ; 291(21): 11198-215, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27002155

RESUMO

A bioinformatics strategy was used to identify Scabin, a novel DNA-targeting enzyme from the plant pathogen 87.22 strain of Streptomyces scabies Scabin shares nearly 40% sequence identity with the Pierisin family of mono-ADP-ribosyltransferase toxins. Scabin was purified to homogeneity as a 22-kDa single-domain enzyme and was shown to possess high NAD(+)-glycohydrolase (Km (NAD) = 68 ± 3 µm; kcat = 94 ± 2 min(-1)) activity with an RSQXE motif; it was also shown to target deoxyguanosine and showed sigmoidal enzyme kinetics (K0.5(deoxyguanosine) = 302 ± 12 µm; kcat = 14 min(-1)). Mass spectrometry analysis revealed that Scabin labels the exocyclic amino group on guanine bases in either single-stranded or double-stranded DNA. Several small molecule inhibitors were identified, and the most potent compounds were found to inhibit the enzyme activity with Ki values ranging from 3 to 24 µm PJ34, a well known inhibitor of poly-ADP-ribosyltransferases, was shown to be the most potent inhibitor of Scabin. Scabin was crystallized, representing the first structure of a DNA-targeting mono-ADP-ribosyltransferase enzyme; the structures of the apo-form (1.45 Å) and with two inhibitors (P6-E, 1.4 Å; PJ34, 1.6 Å) were solved. These x-ray structures are also the first high resolution structures of the Pierisin subgroup of the mono-ADP-ribosyltransferase toxin family. A model of Scabin with its DNA substrate is also proposed.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Streptomyces/enzimologia , ADP Ribose Transferases/antagonistas & inibidores , ADP Ribose Transferases/química , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinética , Simulação de Dinâmica Molecular , Homologia de Sequência de Aminoácidos , Streptomyces/genética , Streptomyces/patogenicidade , Especificidade por Substrato
3.
J Biomol Struct Dyn ; 34(12): 2537-2560, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26610041

RESUMO

C3larvin toxin is a new member of the C3 class of the mono-ADP-ribosyltransferase toxin family. The C3 toxins are known to covalently modify small G-proteins, e.g. RhoA, impairing their function, and serving as virulence factors for an offending pathogen. A full-length X-ray structure of C3larvin (2.3 Å) revealed that the characteristic mixed α/ß fold consists of a central ß-core flanked by two helical regions. Topologically, the protein can be separated into N and C lobes, each formed by a ß-sheet and an α-motif, and connected by exposed loops involved in the recognition, binding, and catalysis of the toxin/enzyme, i.e. the ADP-ribosylation turn-turn and phosphate-nicotinamide PN loops. Herein, we provide two new C3larvin X-ray structures and present a systematic study of the toxin dynamics by first analyzing the experimental variability of the X-ray data-set followed by contrasting those results with theoretical predictions based on Elastic Network Models (GNM and ANM). We identify residues that participate in the stability of the N-lobe, putative hinges at loop residues, and energy-favored deformation vectors compatible with conformational changes of the key loops and 3D-subdomains (N/C-lobes), among the X-ray structures. We analyze a larger ensemble of known C3bot1 conformations and conclude that the characteristic 'crab-claw' movement may be driven by the main intrinsic modes of motion. Finally, via computational simulations, we identify harmonic and anharmonic fluctuations that might define the C3larvin 'native state.' Implications for docking protocols are derived.


Assuntos
ADP Ribose Transferases/química , Toxinas Bacterianas/química , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
4.
Biochemistry ; 54(38): 5920-36, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26352925

RESUMO

Vis toxin was identified by a bioinformatics strategy as a putative virulence factor produced by Vibrio splendidus with mono-ADP-ribosyltransferase activity. Vis was purified to homogeneity as a 28 kDa single-domain enzyme and was shown to possess NAD(+)-glycohydrolase [KM(NAD(+)) = 276 ± 12 µM] activity and with an R-S-E-X-E motif; it targets arginine-related compounds [KM(agmatine) = 272 ± 18 mM]. Mass spectrometry analysis revealed that Vis labels l-arginine with ADP-ribose from the NAD(+) substrate at the amino nitrogen of the guanidinium side chain. Vis is toxic to yeast when expressed in the cytoplasm under control of the CUP1 promotor, and catalytic variants lost the ability to kill the yeast host, indicating that the toxin exerts its lethality through its enzyme activity. Several small molecule inhibitors were identified from a virtual screen, and the most potent compounds were found to inhibit the transferase activity of the enzyme with Ki values ranging from 25 to 134 µM. Inhibitor compound M6 bears the necessary attributes of a solid candidate as a lead compound for therapeutic development. Vis toxin was crystallized, and the structures of the apoenzyme (1.4 Å) and the enzyme bound with NAD(+) (1.8 Å) and with the M6 inhibitor (1.5 Å) were determined. The structures revealed that Vis represents a new subgroup within the mono-ADP-ribosyltransferase toxin family.


Assuntos
ADP Ribose Transferases/química , Toxinas Bacterianas/química , Vibrio/enzimologia , ADP Ribose Transferases/metabolismo , Adenosina Difosfato Ribose/metabolismo , Sequência de Aminoácidos , Toxinas Bacterianas/metabolismo , Cristalografia por Raios X , Guanidina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , NAD+ Nucleosidase/química , NAD+ Nucleosidase/metabolismo , Conformação Proteica , Alinhamento de Sequência , Vibrio/química , Vibrio/metabolismo
5.
J Biol Chem ; 290(3): 1639-53, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25477523

RESUMO

C3larvin toxin was identified by a bioinformatic strategy as a putative mono-ADP-ribosyltransferase and a possible virulence factor from Paenibacillus larvae, which is the causative agent of American Foulbrood in honey bees. C3larvin targets RhoA as a substrate for its transferase reaction, and kinetics for both the NAD(+) (Km = 34 ± 12 µm) and RhoA (Km = 17 ± 3 µm) substrates were characterized for this enzyme from the mono-ADP-ribosyltransferase C3 toxin subgroup. C3larvin is toxic to yeast when expressed in the cytoplasm, and catalytic variants of the enzyme lost the ability to kill the yeast host, indicating that the toxin exerts its lethality through its enzyme activity. A small molecule inhibitor of C3larvin enzymatic activity was discovered called M3 (Ki = 11 ± 2 µm), and to our knowledge, is the first inhibitor of transferase activity of the C3 toxin family. C3larvin was crystallized, and its crystal structure (apoenzyme) was solved to 2.3 Å resolution. C3larvin was also shown to have a different mechanism of cell entry from other C3 toxins.


Assuntos
ADP Ribose Transferases/química , Proteínas de Bactérias/química , Paenibacillus/enzimologia , Proteína rhoA de Ligação ao GTP/química , Sequência de Aminoácidos , Toxinas Botulínicas/química , Catálise , Dicroísmo Circular , Biologia Computacional , Cristalização , Cristalografia por Raios X , Escherichia coli/metabolismo , Guanosina Trifosfato/química , Concentração Inibidora 50 , Dados de Sequência Molecular , NAD/química , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Toxinas Biológicas/química , Fatores de Virulência
6.
FEBS J ; 281(14): 3138-49, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24846670

RESUMO

Calpains are Ca(2+) dependent intracellular cysteine proteases that cleave a wide range of protein substrates to help implement Ca(2+) signaling in the cell. The major isoforms of this enzyme family, calpain-1 and calpain-2, are heterodimers of a large and a small subunit, with the main dimer interface being formed through their C-terminal penta-EF hand (PEF) domains. Calpain-3, or p94, is a skeletal muscle-specific isoform that is genetically linked to limb-girdle muscular dystrophy. Biophysical and modeling studies with the PEF domain of calpain-3 support the suggestion that full-length calpain-3 exists as a homodimer. Here, we report the crystallization of calpain-3's PEF domain and its crystal structure in the presence of Ca(2+) , which provides evidence for the homodimer architecture of calpain-3 and supports the molecular model that places a protease core at either end of the elongated dimer. Unlike other calpain PEF domain structures, the calpain-3 PEF domain contains a Ca(2+) bound at the EF5-hand used for homodimer association. Three of the four Ca(2+) -binding EF-hands of the PEF domains are concentrated near the protease core, and have the potential to radically change the local charge within the dimer during Ca(2+) signaling. Examination of the homodimer interface shows that there would be steric clashes if the calpain-3 large subunit were to try to pair with a calpain small subunit. Database Structural data are available in the Protein Data Bank database under accession number 4OKH.


Assuntos
Calpaína/química , Motivos EF Hand , Proteínas Musculares/química , Sequência de Aminoácidos , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
7.
J Biol Chem ; 287(44): 37030-41, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22969084

RESUMO

The mono-ADP-ribosyltransferase (mART) toxins are contributing factors to a number of human diseases, including cholera, diphtheria, traveler's diarrhea, and whooping cough. VahC is a cytotoxic, actin-targeting mART from Aeromonas hydrophila PPD134/91. This bacterium is implicated primarily in diseases among freshwater fish species but also contributes to gastrointestinal and extraintestinal infections in humans. VahC was shown to ADP-ribosylate Arg-177 of actin, and the kinetic parameters were K(m)(NAD(+)) = 6 µM, K(m)(actin) = 24 µM, and k(cat) = 22 s(-1). VahC activity caused depolymerization of actin filaments, which induced caspase-mediated apoptosis in HeLa Tet-Off cells. Alanine-scanning mutagenesis of predicted catalytic residues showed the predicted loss of in vitro mART activity and cytotoxicity. Bioinformatic and kinetic analysis also identified three residues in the active site loop that were critical for the catalytic mechanism. A 1.9 Å crystal structure supported the proposed roles of these residues and their conserved nature among toxin homologues. Several small molecules were characterized as inhibitors of in vitro VahC mART activity and suramin was the best inhibitor (IC(50) = 20 µM). Inhibitor activity was also characterized against two other actin-targeting mART toxins. Notably, these inhibitors represent the first report of broad spectrum inhibition of actin-targeting mART toxins.


Assuntos
ADP Ribose Transferases/química , Actinas/química , Aeromonas hydrophila/enzimologia , Proteínas de Bactérias/química , Toxinas Bacterianas/química , ADP Ribose Transferases/antagonistas & inibidores , ADP Ribose Transferases/biossíntese , ADP Ribose Transferases/genética , Citoesqueleto de Actina/metabolismo , Motivos de Aminoácidos , Apoptose , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Domínio Catalítico , Forma Celular , Cristalografia por Raios X , Inibidores Enzimáticos/química , Células HeLa , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Saccharomyces cerevisiae , Propriedades de Superfície
8.
FEBS J ; 276(4): 973-82, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19215300

RESUMO

The two main mammalian calpains, 1 and 2, are heterodimers of a large 80 kDa and a small 28 kDa subunit that together bind multiple calcium ions during enzyme activation. The main contact between the two subunits of these intracellular cysteine proteases is through a pairing of the fifth EF-hand of their C-terminal penta-EF-hand (PEF) domains. From modeling studies and observation of crystal structures, it is not obvious why these calpains form heterodimers with the small subunit rather than homodimers of the large subunit, as suggested for calpain 3 (p94). Therefore, we have used a differential tagging system to determine which of the other PEF domain-containing calpains form heterodimers and which form homodimers. His6-tagged PEF domains of calpains 1, 3, 9 and 13 were coexpressed with the PEF domain of the small subunit that had been tagged with an antifreeze protein. As predicted, the PEF domain of calpain 1 heterodimerized and that of calpain 3 formed a homodimer. The PEF domain of digestive tract-specific calpain 9 heterodimerized with the small subunit, and that of calpain 13, prevalent in lung and testis, was mainly found as a homodimer with a small amount of heterodimer. These results indicate whether recombinant production of a particular calpain requires coexpression of the small subunit, and whether this calpain is likely to be active in a small subunit knockout mouse. Furthermore, as the endogenous inhibitor calpastatin binds to PEF domains on the large and small subunit, it is less likely that the homodimeric calpains 3 and 13 with two active sites will bind or be silenced by calpastatin.


Assuntos
Calpaína/metabolismo , Modelos Moleculares , Sequência de Aminoácidos , Calpaína/química , Humanos , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
9.
Biochem J ; 388(Pt 2): 585-91, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15660530

RESUMO

Calpains 1 and 2 are heterodimeric proteases in which large (relative molecular mass M(r) 80000) and small (M(r) 28000) subunits are linked through their respective PEF (penta-EF-hand) domains. The skeletal muscle-specific calpain 3 is believed not to form a heterodimer with the small subunit but might homodimerize through its PEF domain. Size-exclusion chromatography and analytical ultracentrifugation of the recombinant PEF domain of calpain 3 show that it forms a stable homodimer that does not dissociate on dilution. Molecular modelling suggests that there would be no barriers to the dimerization of the whole enzyme through the PEF domains. This orientation would place the catalytic centres at opposite ends of the dimer.


Assuntos
Calpaína/química , Motivos EF Hand , Sequência de Aminoácidos , Sequência de Bases , Dimerização , Escherichia coli , Expressão Gênica , Humanos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...