Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(9): 11605-11616, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407024

RESUMO

Covalent organic frameworks (COFs) having a large surface area, porosity, and substantial amounts of heteroatom content are recognized as the ideal class of materials for energy storage and gas sorption applications. In this work, we have synthesized four different porous COF materials by the polycondensation of a heteroatom-rich flexible triazine-based trialdehyde linker, namely 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine (TPT-CHO), with four different triamine linkers. Triamine linkers were chosen based on differences in size, symmetry, planarity, and heteroatom content, leading to the synthesis of four different COF materials named IITR-COF-1, IITR-COF-2, IITR-COF-3, and IITR-COF-4. IITR-COF-1, synthesized within 24 h from the most planar and largest amine monomer, exhibited the largest Brunauer-Emmett-Teller (BET) surface area of 2830 m2 g-1, superior crystallinity, and remarkable reproducibility compared to the other COFs. All of the synthesized COFs were explored for energy and gas storage applications. It is shown that the surface area and redox-active triazene rings in the materials have a profound effect on energy and gas storage enhancement. In a three-electrode setup, IITR-COF-1 achieved an electrochemical stability potential window (ESPW) of 2.0 V, demonstrating a high specific capacitance of 182.6 F g-1 with energy and power densities of 101.5 Wh kg-1 and 298.3 W kg-1, respectively, at a current density of 0.3 A g-1 in 0.5 M K2SO4 (aq) with long-term durability. The symmetric supercapacitor of IITR-COF-1//IITR-COF-1 exhibited a notable specific capacitance of 30.5 F g-1 and an energy density of 17.0 Wh kg-1 at a current density of 0.12 A g-1. At the same time, it demonstrated 111.3% retention of its initial specific capacitance after 10k charge-discharge cycles. Moreover, it exhibited exceptional CO2 capture capacity of 25.90 and 10.10 wt % at 273 and 298 K, respectively, with 2.1 wt % of H2 storage capacity at 77 K and 1 bar.

2.
Chemosphere ; 337: 139318, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392797

RESUMO

A sustainable management of carcinogenic polycyclic aromatic hydrocarbons (PAHs) to synthesize a series of high surface area (SABET of 563-1553 m2 g-1) microporous polymeric adsorbents is reported. The products with high yield (>90%) were obtained within only 30 min at a low temperature of 50 °C using a microwave-assisted approach with 400 W microwave power followed by 30 min of ageing by raising the temperature to 80 °C. The synthesized adsorbents are used for removing another category of carcinogenic pollutants i.e., polycyclic aromatic sulphur heterocycles (PASHs) from model and real fuels. Adsorptive desulphurization experiment in batch mode could reduce the sulphur from high concentrated model (100 ppm) and real (102 ppm) fuels to 8 ppm and 45 ppm respectively. Similarly, desulphurization of model and real fuels with ultralow sulphur concentrations of 10 and 9 ppm, respectively, reduced the final concentration of sulphur to 0.2 and 3 ppm, respectively. Adsorption isotherms, kinetics, and thermodynamic studies have been conducted using batch mode experiments. Adsorptive desulphurization using fixed bed column studies show the breakthrough capacities of 18.6 and 8.2 mgS g-1, for the same high concentrated model and real fuels, respectively. The breakthrough capacities of 1.1 and 0.6 mgS g-1 are estimated for the ultralow sulphur model and real fuels, respectively. The adsorption mechanism, based on the spectroscopic analysis (FTIR and XPS) demonstrates the role of π-π interactions between the adsorbate and adsorbent. The adsorptive desulphurization studies of model and real fuels from batch to fixed bed column mode would offer an in-depth understanding to demonstrate the lab-scale findings for industrial applications. Thus, the present sustainable strategy could manage two classes of carcinogenic petrochemical pollutants, PAHs and PASHs, simultaneously.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Adsorção , Polímeros , Enxofre/análise , Poluentes Ambientais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...