Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741233

RESUMO

STUDY QUESTION: What is the functional significance of Tex13b in male germ cell development and differentiation? SUMMARY ANSWER: Tex13b regulates male germ cell differentiation by metabolic reprogramming during spermatogenesis. WHAT IS KNOWN ALREADY: Studies in mice and humans suggest that TEX13B is a transcription factor and is exclusively expressed in germ cells. STUDY DESIGN, SIZE, DURATION: We sequenced the coding regions of TEX13B in 628 infertile men and 427 ethnically matched fertile control men. Further, to identify the molecular function of Tex13b, we created a Tex13b knockout and conditional overexpression system in GC-1spg (hereafter, GC-1) cells. PARTICIPANTS/MATERIALS, SETTING, METHODS: Our recent exome sequencing study identified novel candidate genes for male infertility. TEX13B was found to be one of the potential candidates, hence we explored the role of TEX13B in male infertility within a large infertile case-control cohort. We performed functional analyses of Tex13b in a GC-1 cell line using CRISPR-Cas9. We differentially labelled the cell proteins by stable isotope labelling of amino acids in cell culture (SILAC) and performed mass spectrometry-based whole-cell proteomics to identify the differential protein regulation in knockout cells compared to wild-type cells. We found that Tex13b knockout leads to downregulation of the OXPHOS complexes and upregulation of glycolysis genes, which was further validated by western blotting. These results were further confirmed by respirometry analysis in Tex13b knockout cells. Further, we also performed a conditional overexpression of TEX13B in GC-1 cells and studied the expression of OXPHOS complex proteins by western blotting. MAIN RESULTS AND THE ROLE OF CHANCE: We identified a rare variant, rs775429506 (p.Gly237Glu), exclusively in two non-obstructive-azoospermia (NOA) men, that may genetically predispose these men for infertility. Further, we demonstrated that Tex13b functions in the transcription regulation of OXPHOS complexes. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: We examined the function of Tex13b in GC-1 in vitro by knocking out and conditional overexpression, for understanding the function of Tex13b in germ cells. Unfortunately, this could not be replicated in either an animal model or in patient-derived tissue due to the non-availability of an animal model or patient's testis biopsies. WIDER IMPLICATIONS OF THE FINDINGS: This study identified that Tex13b plays an important role in male germ cell development and differentiation. The findings of this study would be useful for screening infertile males with spermatogenic failure and counselling them before the implementation of assisted reproduction technique(s). STUDY FUNDING/COMPETING INTEREST(S): Funding was provided by the Council of Scientific and Industrial Research (CSIR) under the network project (BSC0101 and MLP0113) and SERB, the Department of Science and Technology, Government of India (J C Bose Fellowship: JCB/2019/000027). The authors do not have any competing interest.

2.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477372

RESUMO

Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.


Assuntos
Lâmina Nuclear , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Células HEK293 , Corpos de Inclusão/metabolismo , Lâmina Nuclear/metabolismo , Lâmina Nuclear/patologia
3.
Biochim Biophys Acta Mol Cell Res ; 1868(5): 118964, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33450305

RESUMO

GSK3ß, a ubiquitously expressed Ser/Thr kinase, regulates cell metabolism, proliferation and differentiation. Its activity is spatially and temporally regulated dependent on external stimuli and interacting partners, and its deregulation is associated with various human disorders. In this study, we identify C3G (RapGEF1), a protein essential for mammalian embryonic development as an interacting partner and substrate of GSK3ß. In vivo and in vitro interaction assays demonstrated that GSK3ß and Akt are present in complex with C3G. Molecular modelling and mutational analysis identified a domain in C3G that aids interaction with GSK3ß, and overlaps with its nuclear export sequence. GSK3ß phosphorylates C3G on primed as well as unprimed sites, and regulates its subcellular localization. Over-expression of C3G resulted in activation of Akt and inactivation of GSK3ß. Huntingtin aggregate formation, dependent on GSK3ß inhibition, was enhanced upon C3G overexpression. Stable clones of C2C12 cells generated by CRISPR/Cas9 mediated knockdown of C3G, that cannot differentiate, show reduced Akt activity and S9-GSK3ß phosphorylation compared to wild type cells. Co-expression of catalytically active GSK3ß inhibited C3G induced myocyte differentiation. C3G mutant defective for GSK3ß phosphorylation, does not alter S9-GSK3ß phosphorylation and, is compromised for inducing myocyte differentiation. Our results show complex formation and reciprocal regulation between GSK3ß and C3G. We have identified a novel function of C3G as a negative regulator of GSK3ß, a property important for its ability to induce myogenic differentiation.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 2 de Liberação do Nucleotídeo Guanina/química , Fator 2 de Liberação do Nucleotídeo Guanina/metabolismo , Mutação , Mioblastos/citologia , Animais , Células COS , Diferenciação Celular , Linhagem Celular , Chlorocebus aethiops , Citoplasma/metabolismo , Regulação da Expressão Gênica , Fator 2 de Liberação do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Camundongos , Desenvolvimento Muscular , Mioblastos/metabolismo , Fosforilação
4.
J Cell Sci ; 133(18)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32878939

RESUMO

Proteasome-mediated degradation of misfolded proteins prevents aggregation inside and outside mitochondria. But how do cells safeguard the mitochondrial proteome and mitochondrial functions despite increased aggregation during proteasome inactivation? Here, using a novel two-dimensional complexome profiling strategy, we report increased supraorganization of respiratory complexes (RCs) in proteasome-inhibited cells that occurs simultaneously with increased pelletable aggregation of RC subunits inside mitochondria. Complex II (CII) and complex V (CV) subunits are increasingly incorporated into oligomers. Complex I (CI), complex III (CIII) and complex IV (CIV) subunits are engaged in supercomplex formation. We unravel unique quinary states of supercomplexes during early proteostatic stress that exhibit plasticity and inequivalence of constituent RCs. The core stoichiometry of CI and CIII is preserved, whereas the composition of CIV varies. These partially disintegrated supercomplexes remain functionally competent via conformational optimization. Subsequently, increased stepwise integration of RC subunits into holocomplexes and supercomplexes re-establishes steady-state stoichiometry. Overall, the mechanism of increased supraorganization of RCs mimics the cooperative unfolding and folding pathways for protein folding, but is restricted to RCs and is not observed for any other mitochondrial protein complexes.This article has an associated First Person interview with the first author of the paper.


Assuntos
Membranas Mitocondriais , Proteostase , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
5.
J Mol Biol ; 431(5): 996-1015, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682348

RESUMO

Proteostasis is maintained by optimal expression, folding, transport, and clearance of proteins. Deregulation of any of these processes triggers protein aggregation and is implicated in many age-related pathologies. In this study, using quantitative proteomics and microscopy, we show that aggregation of many nuclear-encoded mitochondrial proteins is an early protein destabilization event during short-term proteasome inhibition. Among these, respiratory chain complex (RCC) subunits represent a group of functionally related proteins consistently forming aggregates under multiple proteostasis stresses with varying aggregation propensities. Sequence analysis reveals that several RCC subunits, irrespective of the cleavable mitochondrial targeting sequence, contain low-complexity regions at the N-terminus. Using different chimeric and mutant constructs, we show that these low-complexity regions partially contribute to the intrinsic instability of multiple RCC subunits. Taken together, we propose that physicochemically driven aggregation of unassembled RCC subunits destabilizes their functional assembly inside mitochondria. This eventually deregulates the biogenesis of respiratory complexes and marks the onset of mitochondrial dysfunction.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos/fisiologia , Subunidades Proteicas/metabolismo , Animais , Linhagem Celular Tumoral , Citoplasma/metabolismo , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas/fisiologia , Proteostase/fisiologia
6.
Biochim Biophys Acta Mol Cell Res ; 1865(11 Pt A): 1526-1538, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30327196

RESUMO

Optineurin (Optn) is an autophagy receptor that performs various functions in cargo-selective and non-selective autophagy. Here, we have identified and characterized a splice variant of mouse optineurin mRNA, which produces a truncated protein lacking N-terminal 157 amino acids (d157mOptn). This mRNA and protein are expressed in several tissues and cells. d157mOptn has an intact LC3-interacting region and a serine (S187) in it. However, unlike normal optineurin, the d157mOptn was not phosphorylated at this site when expressed in mammalian cells, and showed reduced interaction with TBK1 (tank binding kinase) that mediates phosphorylation at S187 (S177 in human OPTN). This phosphorylation of Optn required intact N-terminal sequence as well as functional C-terminal ubiquitin-binding domain. Unlike normal optineurin, d157mOptn was unable to promote autophagosome and autolysosome formation upon expression in Optn-deficient cells. d157mOptn was recruited to mutant huntingtin aggregates, but unlike wild type optineurin, it was unable to clear these aggregates by autophagy in neuronal NSC-34 cells. Phospho-TBK1 was seen around mutant Huntingtin aggregates in Optn overexpressing cells but it was reduced in cells overexpressing d157mOptn. Thus, we have identified an isoform of mouse optineurin which is defective in cargo-selective and non-selective autophagy possibly due to loss of phosphorylation and impaired interaction with TBK1. This isoform, which inhibits autophagosome formation in neuronal cells, might be involved in selectively modulating some of the functions of Optn, such as autophagy. Our results provide an insight into the role of N-terminal domain of Optn in various autophagic functions.


Assuntos
Autofagia/genética , Splicing de RNA , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Animais , Autofagossomos/metabolismo , Biomarcadores , Proteínas de Ciclo Celular , Linhagem Celular , Fibroblastos , Humanos , Proteína Huntingtina/metabolismo , Imuno-Histoquímica , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout , Mutação , Neurônios/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...