Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398138

RESUMO

Breast cancer (BC) is one of the most common types of cancer in women in the United Arab Emirates. Immunogenic tumours, such as triple-negative breast cancer (TNBC), show increased neutrophil infiltration, which is associated with poor prognosis and limited efficacy of immunotherapy. This study aims to investigate in vitro the bidirectional effect of neutrophils on metastatic TNBC (MDA-MB-231) compared to less-metastatic luminal breast cancer (MCF-7) cell lines. We found that BC cells or their conditioned medium (CM) reduced the viability of neutrophil-like cells (HL60). This was supported by increased cellular stress and NETosis in differentiated HL60 cells (dHL60) upon exposure to MDA-MB-231 compared to MCF-7-CM using nucleic acid staining essays. Flow cytometry showed comparable expression of inflammatory markers by polymorphonuclear cells (PMN) when treated with MDA-MB-231-CM and standard polarizing cocktails. Furthermore, MDA-MB-231-CM triggered an inflammatory pattern with evidence of stronger adhesion (CD62L) and degranulation (CD11b and CD66b) phenotypes. The proinflammatory polarization of dHL60 by MDA-MB-231-CM was additionally confirmed by the elevated CD54 expression, myeloperoxidase, and CD11b protein levels, which matched an increased transwell migratory capacity. In conclusion, BC might use neutrophils to their benefit through NETosis and complement system activation, which makes this crosstalk a potential mechanism for understanding tumour progression.

2.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298172

RESUMO

Statins have been shown to cause diverse male reproductive function impairment, and in some cases, orchialgia. Therefore, the current study investigated the possible mechanisms through which statins may alter male reproductive parameters. Thirty adult male Wistar rats (200-250 g) were divided into three groups. The animals were orally administered rosuvastatin (50 mg/kg), simvastatin (50 mg/kg), or 0.5% carboxy methyl cellulose (control), for a 30-day period. Spermatozoa were retrieved from the caudal epididymis for sperm analysis. The testis was used for all biochemical assays and immunofluorescent localization of biomarkers of interest. Rosuvastatin-treated animals presented with a significant decrease in sperm concentration when compared to both the control and simvastatin groups (p < 0.005). While no significant difference was observed between the simvastatin and the control group. The Sertoli cells, Leydig cells and whole testicular tissue homogenate expressed transcripts of solute carrier organic anion transporters (SLCO1B1 and SLCO1B3). There was a significant decrease in the testicular protein expression of the luteinizing hormone receptor, follicle stimulating hormone receptor, and transient receptor potential vanilloid 1 in the rosuvastatin and simvastatin-treated animals compared to the control. The expression of SLCO1B1, SLCO1B2, and SLCO1B3 in the different spermatogenic cells portray that un-bio transformed statin can be transported into the testicular microenvironment, which can subsequently alter the regulation of the gonadal hormone receptors, dysregulate pain-inflammatory biomarkers, and consequently impair sperm concentration.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Ratos , Animais , Masculino , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Rosuvastatina Cálcica/farmacologia , Ratos Wistar , Sêmen , Testículo/metabolismo , Espermatozoides/metabolismo , Hormônio Foliculoestimulante/metabolismo , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Hormônios Gonadais/metabolismo , Testosterona/metabolismo
3.
Biomedicines ; 10(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35885021

RESUMO

Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. Current asthma medications have limited efficacy in treating fibrosis, particularly in patients with severe asthma, necessitating a deeper understanding of the fibrotic mechanisms. The NF-κB pathway is key to airway inflammation in asthma, as it regulates the activity of multiple pro-inflammatory mediators that contribute to airway pathology. Bcl10 is a well-known upstream mediator of the NF-κB pathway that has been linked to fibrosis in other disease models. Therefore, we investigated Bcl10-mediated NF-κB activation as a potential pathway regulating fibrotic signaling in severe asthmatic fibroblasts. We demonstrate here the elevated protein expression of Bcl10 in bronchial fibroblasts and bronchial biopsies from severe asthmatic patients when compared to non-asthmatic individuals. Lipopolysaccharide (LPS) induced the increased expression of the pro-fibrotic cytokines IL-6, IL-8 and TGF-ß1 in bronchial fibroblasts, and this induction was associated with the activation of Bcl10. Inhibition of the Bcl10-mediated NF-κB pathway using an IRAK1/4 selective inhibitor abrogated the pro-fibrotic signaling induced by LPS. Thus, our study indicates that Bcl10-mediated NF-κB activation signals increased pro-fibrotic cytokine expression in severe asthmatic airways. This reveals the therapeutic potential of targeting Bcl10 signaling in ameliorating inflammation and fibrosis, particularly in severe asthmatic individuals.

4.
Cancers (Basel) ; 14(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406434

RESUMO

Severe asthma and lung cancer are both heterogeneous pathological diseases affecting the lung tissue. Whilst there are a few studies that suggest an association between asthma and lung cancer, to the best of our knowledge, this is the first study to identify common genes involved in both severe asthma and lung cancer. Publicly available transcriptomic data for 23 epithelial brushings from severe asthmatics and 55 samples of formalin-fixed paraffin-embedded (FFPE) lung cancer tissue at relatively early stages were analyzed by absolute gene set enrichment analysis (GSEA) in comparison to 37 healthy bronchial tissue samples. The key pathways enriched in asthmatic patients included adhesion, extracellular matrix, and epithelial cell proliferation, which contribute to tissue remodeling. In the lung cancer dataset, the main pathways identified were receptor tyrosine kinase signaling, wound healing, and growth factor response, representing the early cancer pathways. Analysis of the enriched genes derived from the pathway analysis identified seven genes expressed in both the asthma and lung cancer sets: BCL3, POSTN, PPARD, STAT1, MYC, CD44, and FOSB. The differential expression of these genes was validated in vitro in the cell lines retrieved from different lung cancer and severe asthma patients using real-time PCR. The effect of the expression of the seven genes identified in the study on the overall survival of lung cancer patients (n = 1925) was assessed using a Kaplan-Meier plot. In vivo validation performed in the archival biopsies obtained from patients diagnosed with both the disease conditions provided interesting insights into the pathogenesis of severe asthma and lung cancer, as indicated by the differential expression pattern of the seven transcripts in the mixed group as compared to the asthmatics and lung cancer samples alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...