Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biophys J ; 94(12): 4725-36, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18339739

RESUMO

Bilayers composed of phosphatidylcholine (PC), sphingomyelin (SM), and cholesterol (CHOL) are commonly used as systems to model the raft-lipid domain structure believed to compartmentalize particular cell membrane proteins. In this work, micropipette aspiration of giant unilamellar vesicles was used to test the elasticities, water permeabilities, and rupture tensions of single-component PC, binary 1:1 PC/CHOL, and 1:1 SM/CHOL, and ternary 1:1:1 PC/SM/CHOL bilayers, one set of measurements with dioleoyl PC (DOPC; C18:1/C18:1 PC) and the other with stearoyloleoyl PC (SOPC; C18:0/C18:1 PC). Defining the elastic moduli (K(A)), the initial slopes of the increase in tension (sigma) versus stretch in lipid surface area (alpha(e)) were determined for all systems at low (15 degrees C) and high (32-33 degrees C) temperatures. The moduli for the single-component PC and binary phospholipid/CHOL bilayers followed a descending hierarchy of stretch resistance with SM/CHOL > SOPC/CHOL > DOPC/CHOL > PC. Although much more resistant to stretch than the single-component PC bilayers, the elastic response of vesicle bilayers made from the ternary phospholipid/CHOL mixtures showed an abrupt softening (discontinuity in slope), when immediately subjected to a steady ramp of tension at the low temperature (15 degrees C). However, the discontinuities in elastic stretch resistance at low temperature vanished when the bilayers were held at approximately 1 mN/m prestress for long times before a tension ramp and when tested at the higher temperature 32-33 degrees C. The elastic moduli of single-component PC and DOPC/CHOL bilayers changed very little with temperature, whereas the moduli of the binary SOPC/CHOL and SM/CHOL bilayers diminished markedly with increase in temperature, as did the ternary SOPC/SM/CHOL system. For all systems, increasing temperature increased the water permeability but decreased rupture tension. Concomitantly, the measurements of permeability exhibited a prominent correlation with the rupture tension across all the systems. Together, these micromechanical tests of binary and ternary phospholipid/CHOL bilayers demonstrate that PC hydrocarbon chain unsaturation and temperature are major determinants of the mechanical and permeation properties of membranes composed of raft microdomain-forming lipids.


Assuntos
Bicamadas Lipídicas/química , Fluidez de Membrana , Microdomínios da Membrana/química , Modelos Químicos , Fosfolipídeos/química , Água/química , Simulação por Computador , Elasticidade , Conformação Molecular , Permeabilidade , Tensão Superficial , Resistência à Tração
3.
Biophys J ; 79(1): 321-7, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10866958

RESUMO

Micropipette aspiration was used to test mechanical strength and water permeability of giant-fluid bilayer vesicles composed of polyunsaturated phosphatidylcholine PC lipids. Eight synthetic-diacyl PCs were chosen with 18 carbon chains and degrees of unsaturation that ranged from one double bond (C18:0/1, C18:1/0) to six double bonds per PC molecule (diC18:3). Produced by increasing pipette pressurization, membrane tensions for lysis of single vesicles at 21 degrees C ranged from approximately 9 to 10 mN/m for mono- and dimono-unsaturated PCs (18:0/1, 18:1/0, and diC18:1) but dropped abruptly to approximately 5 mN/m when one or both PC chains contained two cis-double bonds (C18:0/2 and diC18:2) and even lower approximately 3 mN/m for diC18:3. Driven by osmotic filtration following transfer of individual vesicles to a hypertonic environment, the apparent coefficient for water permeability at 21 degrees C varied modestly in a range from approximately 30 to 40 microm/s for mono- and dimono-unsaturated PCs. However, with two or more cis-double bonds in a chain, the apparent permeability rose to approximately 50 microm/s for C18:0/2, then strikingly to approximately 90 microm/s for diC18:2 and approximately 150 microm/s for diC18:3. The measurements of water permeability were found to scale exponentially with the reduced temperatures reported for these lipids in the literature. The correlation supports the concept that increase in free volume acquired in thermal expansion above the main gel-liquid crystal transition of a bilayer is a major factor in water transport. Taken together, the prominent changes in lysis tension and water permeability indicate that major changes occur in chain packing and cohesive interactions when two or more cis-double bonds alternate with saturated bonds along a chain.


Assuntos
Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Água/química , Cinética , Permeabilidade , Estresse Mecânico , Tensão Superficial , Temperatura
4.
Biophys J ; 79(1): 328-39, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10866959

RESUMO

Micropipette pressurization of giant bilayer vesicles was used to measure both elastic bending k(c) and area stretch K(A) moduli of fluid-phase phosphatidylcholine (PC) membranes. Twelve diacyl PCs were chosen: eight with two 18 carbon chains and degrees of unsaturation from one double bond (C18:1/0, C18:0/1) to six double bonds per lipid (diC18:3), two with short saturated carbon chains (diC13:0, diC14:0), and two with long unsaturated carbon chains (diC20:4, diC22:1). Bending moduli were derived from measurements of apparent expansion in vesicle surface area under very low tensions (0.001-0.5 mN/m), which is dominated by smoothing of thermal bending undulations. Area stretch moduli were obtained from measurements of vesicle surface expansion under high tensions (>0.5 mN/m), which involve an increase in area per molecule and a small-but important-contribution from smoothing of residual thermal undulations. The direct stretch moduli varied little (< +/-10%) with either chain unsaturation or length about a mean of 243 mN/m. On the other hand, the bending moduli of saturated/monounsaturated chain PCs increased progressively with chain length from 0.56 x 10(-19) J for diC13:0 to 1.2 x 10(-19) J for diC22:1. However, quite unexpectedly for longer chains, the bending moduli dropped precipitously to approximately 0.4 x 10(-19) J when two or more cis double bonds were present in a chain (C18:0/2, diC18:2, diC18:3, diC20:4). Given nearly constant area stretch moduli, the variations in bending rigidity with chain length and polyunsaturation implied significant variations in thickness. To test this hypothesis, peak-to-peak headgroup thicknesses h(pp) of bilayers were obtained from x-ray diffraction of multibilayer arrays at controlled relative humidities. For saturated/monounsaturated chain bilayers, the distances h(pp) increased smoothly from diC13:0 to diC22:1 as expected. Moreover, the distances and elastic properties correlated well with a polymer brush model of the bilayer that specifies that the elastic ratio (k(c)/K(A))(1/2) = (h(pp) - h(o))/24, where h(o) approximately 1 nm accounts for separation of the headgroup peaks from the deformable hydrocarbon region. However, the elastic ratios and thicknesses for diC18:2, diC18:3, and diC20:4 fell into a distinct group below the correlation, which showed that poly-cis unsaturated chain bilayers are thinner and more flexible than saturated/monounsaturated chain bilayers.


Assuntos
Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fenômenos Biofísicos , Biofísica , Elasticidade , Lipídeos/química , Lipossomos/química , Modelos Químicos , Pressão , Tensão Superficial
5.
Blood ; 77(12): 2757-63, 1991 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-2043771

RESUMO

Subtle peroxidative perturbation of normal red blood cells (RBC) using t-butylhydroperoxide creates a leak pathway for monovalent cations that is reversibly activated by cell deformation. To determine what factor promotes expression of this unique membrane defect, we have dissected "peroxidation" into components that can be evaluated separately by comparing K leak from suitably modified RBC during elliptical deformation and parallel control incubation. Selective introduction of phospholipid hydroperoxides into normal RBC membranes successfully induces a deformation-dependent leak pathway having the same phenomenology as that previously documented for cells treated with t-butylhydroperoxide itself (fully recoverable; calcium-independent; inhibited at lower pH; K efflux balanced by Na influx). This leak pathway occurs in the absence of detectable secondary peroxidative change and appears to reflect a direct influence of lipid hydroperoxide. Using micropipette examination of vesicular bilayers reconstituted from RBC lipid extracts, we find that lipid from peroxidized RBC exhibits only a slight tendency to be less cohesive than normal lipid, apparently precluding isolated lipid properties as an explanation for altered permeability barrier function. However, addition of a hydrophobic membrane-spanning peptide to these same lipids significantly diminishes bilayer cohesion, an effect that is exacerbated further by the presence of peroxidized lipid. These observations suggest that lipid hydroperoxide is a necessary, but perhaps not sufficient, factor for induction of this unique leak pathway. Our results may be relevant to the abnormal cation homeostasis of sickle RBC in which deformation of an oxidatively perturbed membrane occurs during the sickling phenomenon.


Assuntos
Eritrócitos/metabolismo , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos , Fosfolipídeos/farmacologia , Potássio/sangue , Fenômenos Biofísicos , Biofísica , Cátions Monovalentes , Eritrócitos/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/metabolismo , Lisofosfatidilcolinas/farmacologia , Malondialdeído/farmacologia , Peróxidos/farmacologia , Fosfatidilcolinas/farmacologia , Tiobarbitúricos , terc-Butil Hidroperóxido
6.
Phys Rev Lett ; 64(17): 2094-2097, 1990 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-10041575
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...