Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 132: 108502, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36565998

RESUMO

Vibrio parahaemolyticus is a Gram-negative bacterium commonly found in marine and estuarine environments and is endemic among the global shrimp aquaculture industry. V. parahaemolyticus proteins PirA and PirB have been determined to be major virulence factors that contribute significantly to the development of acute hepatopancreatic necrosis disease. Our previous work had demonstrated the lethality of recombinant PirA and PirB proteins to Pacific white shrimp (Liptopenaeus vannamei). To understand the host response to these proteins, recombinant PirA and PirB proteins were administered using a reverse gavage method and individual shrimp were then sampled over time. Shrimp hepatopancreas libraries were generated and RNA sequencing was performed on the control and recombinant PirA/B-treated samples. Differentially expressed genes were identified among the assayed time points. Differentially expressed genes that were co-expressed at the later time points (2-, 4- and 6-h) were also identified and gene associations were established to predict functional physiological networks. Our analysis reveals that the recombinant PirA and PirB proteins have likely initiated an early host response involving several cell survival signaling and innate immune processes.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Proteínas de Bactérias/genética , Vibrio parahaemolyticus/fisiologia , Fatores de Virulência , Aquicultura , Perfilação da Expressão Gênica/veterinária , Doença Aguda
2.
Fish Shellfish Immunol ; 124: 343-361, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35398222

RESUMO

Utilizing RNA-seq, this study compared the transcriptomic responses of three improved strains (VSel, PSel, and CSel) of rainbow trout fry during acute stages of challenge with infectious hematopoietic necrosis virus (IHNV). The VSel strain has been selected for resistance against the specific strain of IHNV used in our challenge, PSel has undergone selection for utilization of plant-protein based feeds and previously has shown elevated non-specific disease resistance despite no disease related selection pressures, and the final strain, CSel, is a commercial strain that has been domesticated for several years but has not been selected for specific viral disease resistance. Following a 21-day IHNV challenge, Kaplan-Meier survival estimator curves and cumulative percent mortality (CPM) showed significant differences in IHNV resistance across strains: VSel - 19.3 ± 5.0%, PSel - 67. ± 3.03%, CSel - 94.6 ± 4.1% CPM. To evaluate acute responses to IHNV infection, whole blood, as well as samples from the kidney, liver, and intestine, were collected at 0, 4, 12, 24, and 48 h post infection (hpi). Serum lysozyme activity, a marker of non-specific innate immunity, showed strain and temporal effects during the acute infection phase with PSel showing the highest activity at 0 and 48 hpi. Differential gene expression responses were detected, with varying degrees, in all tissues, both between strains, as well as across acute timepoints within strains. The VSel strain showed upregulation for a particular subset of viral recognition genes during early infection timepoints and rather limited upregulation of immune genes later, while maintaining and reactivating metabolic pathways. The CSel strain showed a downregulation of metabolic related genes and a limited upregulation of immune genes, while the PSel strain showed similar downregulation of metabolic genes during acute infection, yet when compared to the CSel strain, showed a more robust innate immune response. Evaluation of upregulated immune response genes, as well as interferon-related genes showed the PSel strain to have the greatest number of uniquely upregulated immune genes in both the kidney and intestine, with CSel and PSel showing a similar number of such genes upregulated in liver. A moderate number of immune response genes were shared between PSel and CSel in all tissues, though both PSel and VSel showed a high number of uniquely overexpressed immune response genes in the kidney, and PSel showed the highest number of uniquely upregulated interferon related genes in the intestine. Overall, the VSel response was unique from the CSel with very little overlap in activated immune responses. Findings from this study highlight the disparity in IHNV resistance among genetic strains of rainbow trout, while identifying molecular mechanisms underlying differences in disease phenotypes. Furthermore, our results on trout strains with distinct selection backgrounds yields comparative insights into the adaptive gains brought about by selection programs for pathogen-specific disease resistance, as well as the non-specific immune enhancement associated with selection for utilization of plant-based diets.


Assuntos
Doenças dos Peixes , Vírus da Necrose Hematopoética Infecciosa , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Animais , Resistência à Doença/genética , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Interferons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...