Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649075

RESUMO

Vinylsulfonic acid (VSA), acrylamide (AM) and N, N methylene bis acrylamide(MBA) were copolymerized by radical polymerization in the presence of gum ghatti (GG) and treated water hyacianth (WH) in water. Several composite copolymers were prepared by varying the i) AM: VSA molar ratios ii) wt% of GG and iii) wt% of treated WH based on a Box-Behnken Design(BBD) of a response surface methodology (RSM) model with three input variables and the batch adsorption capacity (mg/g) of 100 mg/L Cd (II) from water as response. The composite polymer was characterized by Fourier transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis(TGA), X- ray photo electron spectroscopy (XPS), compressive strength, pH reversibility, pH at point zero charge (pHPZC), Brunauer-Emmett-Teller (BET) surface area and scanning electron microscopy (SEM). The network parameters of the composites were determined. The copolymer composite prepared with AM: VSA of 5:1 containing 10 wt% GG and 4 wt% treated WH showed an optimum batch adsorption capacity of 399.15 mg/g Cd (II) from water containing 100 mg/L Cd (II). The same composite showed an adsorption capacity of 170.1 mg/g and a removal% of 31.5 at a feed concentration/feed flow rate/bed height of 150 mgL-1/30mLmin-1/30 mm in a fixed bed column.


Assuntos
Celulose , Gomas Vegetais , Adsorção , Gomas Vegetais/química , Celulose/química , Celulose/análogos & derivados , Ácidos Sulfônicos/química , Purificação da Água/métodos , Água/química , Concentração de Íons de Hidrogênio , Acrilamida/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Polimerização , Difração de Raios X , Acrilamidas/química , Resinas Acrílicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cádmio/química , Polivinil/química
2.
J Phys Chem Lett ; 15(14): 3713-3720, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38546293

RESUMO

The remarkable brightness and rapid scintillation observed in perovskite single crystals (SCs) become even more striking when they are operated at cryogenic temperatures. In this study, we present advancements in enhancing the scintillation properties of methylammonium lead bromide (MAPbBr3) SCs by optimizing the synthesis process. We successfully synthesized millimeter-sized MAPbBr3 SCs with bright green luminescence under UV light. However, both MAPbBr3 (Control-1M and THF-0.4M) SCs display notable radioluminescence exclusively at low temperatures due to their phase transitions. Notably, the THF-0.4M SCs exhibit a remarkable improvement in radioluminescence light yield, surpassing Control-1M SCs more than 2-fold. Further, THF-0.4M SCs demonstrate an ultrafast decay component of 0.52 ns (82.2%) and a slower component of 1.80 ns (17.8%), contributing to a rapid scintillation response at low temperatures. Therefore, the amalgamation of ultrafast decay components and improved radioluminescence light yield equips THF-0.4M SCs to emerge as a top choice for perovskite scintillators for X-ray timing applications.

3.
Nanoscale ; 15(43): 17398-17408, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37796034

RESUMO

Multifunctional self-powered energy harvesting devices have attracted significant attention for wearable, portable, IoT and healthcare devices. In this study, we report transition metal dichalcogenide (TMDC) ternary alloy (Mo0.5W0.5S2)-based self-powered photosensitive vertical triboelectric nanogenerator (TENG) devices, where the ternary alloy functions both as a triboelectric layer and as a photoabsorbing material. The scalable synthesis of the highly crystalline Mo0.5W0.5S2 ternary alloy can overcome the limitations of binary TMDCs (MoS2, WS2) by utilizing its superior optical characteristics, enabling this semiconductor-based TENG device to simultaneously exhibit photoelectric and triboelectric properties. Benefiting from visible light absorption, this vertical TENG device generates higher triboelectric outputs and exhibits excellent power harvesting properties under visible light illumination. The open circuit voltage and short circuit currents of the devices under illumination (410 nm, 525 µW cm-2) are enhanced by 62% and 253%, respectively, while in the darkness, a very high photoresponsivity of ∼45.5 V mW-1 (voltage mode) is exhibited, indicating the superior energy harvesting potential under ultralow illumination. Furthermore, the energy harvesting ability from regular human activities and the operation as artificial e-skin expands the multi-functionality of this TENG device, paving a pathway for simultaneous mechanical and photonic energy harvesting with self-powered sensing.

4.
Nanotechnology ; 34(43)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478833

RESUMO

In addition to the superior electrical and optoelectronic attributes, ultrathin two-dimensional transition metal dichalcogenides (TMDCs) have evoked appreciable attention for their piezoelectric properties. In this study, we report, the piezoelectric characteristics of large area, chemically exfoliated TMDCs and their heterostructures for the first time, as verified by piezoelectric force microscopy measurements. Piezoelectric output voltage response of the MoS2-WSe2heterostructure piezoelectric nanogenerator (PENG) is enhanced by ∼47.5% if compared with WSe2and ∼29% if compared to MoS2PENG, attributed to large band offset induced by heterojunction formation. This allows the scalable fabrication of self-powered energy harvesting PENGs, which can overcome the various shortcomings of complicated synthesis processes, complex fabrication steps, low yield, and poor stability. The fabricated flexible, self-powered MoS2-WSe2heterostructure nanogenerator exhibits piezoelectric output ∼46 mV under a strain of ∼0.66% yielding a power output ∼12.3 nW, which offers better performance than other two-dimensional material based piezoelectric devices and also reveals the ability of bio-mechanical energy harvesting. This cost effective approach to fabricate eco-friendly MoS2-WSe2based fatigue free, superior performance piezoelectric-nanogenerators can be utilized to evolve flexible energy harvesting devices and may also be attractive as a self-powered, smart wearable sensor devices.

5.
Nanotechnology ; 34(42)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37433289

RESUMO

This work reports anin situ, one-step hydrothermal preparation procedure of a binder-free electrode growth of Ni6Se5on nickel foam (Ni6Se5/NF) with a rod-like structure. Ni6Se5is an enveloped transition metal chalcogenides of formula M(n+1)Xn(where 2 ≤n≤ 8, M is a transition metal and X is chalcogen) of the nickel selenide family. The Ni6Se5/NF electrode described here demonstrates an exceptional lifetime of 81% capacitance retention over 20000 cycles and a high specific capacitance of 473.5 Fg-1at a current density of 4 Ag-1. The Ni6Se5/NF/activated carbon asymmetric supercapacitor (SC) exhibits a remarkable 97.3 Whkg-1energy density and a 2325 Wkg-1power density. Ni6Se5served as an active electrode material in SC applications and offered exceptional power density and long cycle life. Ni6Se5/NF, used as an anode for Li-ion batteries, has a lithium storage capacity of 939.7 mAhg-1at 100 mAg-1current density. Ni6Se5's (active electrode material) excellent energy storage capability, which was previously unreported, is particularly beneficial for electrochemical energy storage device applications.

6.
Nanotechnology ; 34(12)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36595332

RESUMO

Two dimensional (2D) van der Waals heterostructures (vdWHs) have unique potential in facilitating the stacking of layers of different 2D materials for optoelectronic devices with superior characteristics. However, the fabrication of large area all-2D heterostructures is still challenging towards realizing practical devices at a reduced cost. In the present work, we have demonstrated a rapid yet simple, impurity-free and efficient sonication-assisted chemical exfoliation approach to synthesize hybrid vdWHs based on 2D molybdenum disulphide (MoS2) and tungsten disulphide (WS2), with high yield. Microscopic and spectroscopic studies have confirmed the successful exfoliation of layered 2D materials and formation of their hybrid heterostructures. The co-existence of 2D MoS2and WS2in the vdWH hybrids is established by optical absorption and Raman shift measurements along with their chemical stiochiometry determined by x-ray photoelectron spectroscopy. The spectral response of the vdWH/Si (2D/3D) heterojunction photodetector fabricated using the as-synthesized material is found to exhibit broadband photoresponse compared to that of the individual 2D MoS2and WS2devices. The peak responsivity and detectivity are found to be as high as ∼2.15 A W-1and 2.05 × 1011Jones, respectively for an applied bias of -5 V. The ease of fabrication with appreciable performance of the chemically synthesized vdWH-based devices have revealed their potential use for large area optoelectronic applications on Si-compatible CMOS platforms.

7.
ACS Appl Bio Mater ; 5(12): 5693-5705, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36475584

RESUMO

Bacterial invasion is a serious concern during the wound healing process. The colonization of bacteria is mainly responsible for the pH fluctuation at the wound site. Therefore, the fabrication of a proper wound dressing material with antibacterial activity and pH monitoring ability is necessary to acquire a fast healing process. Therefore, this work is dedicated to designing a vitamin B12-loaded gelatin microsphere (MS) decorated with a carbon dot (CD) metal-organic framework (MOF) for simultaneous pH sensing and advanced wound closure application. The resultant MS portrayed a high specific surface area and a hierarchically porous structure. Furthermore, the surface of the resultant MS contained numerous carboxyl groups and amine groups whose deprotonation and protonation with the pH alternation are accountable for the pH-sensitive properties. The vitamin B12 release study was speedy from the MOF structure in an acidic medium, which was checked by gelatin coating, and a controlled drug release behavior was observed. The system showed excellent cytocompatibility toward the L929 cell line and remarkable antibacterial performance against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Furthermore, the combined effect of Zn2+, the imidazole unit, and CDs produces an outstanding bactericidal effect on the injury sites. Finally, the in vitro wound model suggests that the presence of the vitamin B12-loaded gelatin MS accelerates the proliferation of resident fibroblast L929 cells and causes tissue regeneration in a time-dependent manner. The relative wound area, % of wound closure, and wound healing speed values are remarkable and suggest the requirement for assessing the response of the system before exploiting its prospective in vivo application.


Assuntos
Gelatina , Estruturas Metalorgânicas , Gelatina/farmacologia , Estruturas Metalorgânicas/farmacologia , Microesferas , Carbono/farmacologia , Vitamina B 12/farmacologia , Ligantes , Estudos Prospectivos , Cicatrização , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio
8.
ACS Appl Bio Mater ; 5(8): 3850-3858, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35926152

RESUMO

Diagnosing heavy metals poisoning in human beings is of paramount importance. In this work, we present the design of a biocompatible FexNi(1-x)O hierarchical nanostructure-based sensor for ultraselective detection of arsenate (As(V)) ions in biological environments (e.g., body fluids, blood plasma, etc.). A novel iron doping technique was employed to fabricate the nanostructures rich with Fe cores to induce ultraselectivity toward arsenates. These nanostructures were used as dispersed markers and thin films deposited on Si/SiO2 substrates to support in vivo and in vitro detection of As(V) ions. The device demonstrated excellent sensitivity with a maximum response of 64.7% (for 1000 ppm As(V) ions) with a limit of detection of 1 ppb in blood plasma. The sensor's response time (τr) was 5 s with 95.48% recovery with a maximum error of ±0.549% after three washes. The device showed excellent response stability for 63 days with a maximum error of ±1.27%. The sensor devices were highly reproducible, with a maximum variation of ±0.6% in response for a batch of four devices. Due to Fe doping, the nanostructures in suspension demonstrated as arsenate markers with excellent cytocompatibility (with dosage up to 1 mg/mL) for human umbilical vein endothelial cells and 3T3 fibroblasts (LDH < 120 and cell viability ∼80%) till 48 h of incubation. The sensing mechanism suggested that the nanostructures not only detect arsenates but also prevent their substantial reduction to arsenites under anoxic environments. Thus, the sensors may show considerable progress toward early arsenate detection in living systems.


Assuntos
Arseniatos , Intoxicação por Arsênico , Arseniatos/toxicidade , Intoxicação por Arsênico/diagnóstico , Células Endoteliais , Humanos , Íons , Prognóstico , Dióxido de Silício
9.
ACS Appl Mater Interfaces ; 14(30): 34875-34883, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35880297

RESUMO

The concept of alloy engineering has emerged as a viable technique toward tuning the band gap as well as engineering the defect levels in two-dimensional transition-metal dichalcognides (TMDCs). The possibility of synthesizing these ultrathin TMDC materials through a chemical route has opened up realistic possibilities to fabricate hybrid multifunctional devices. By synthesizing nanosheets with different composites of MoS2xSe2(1-x) (x = 0 - 1) using simple chemical methods, we systematically investigate the photoresponse properties of three terminal hybrid devices by decorating large-area graphene with these nanosheets (x = 0, 0.5, 1) in 2D-2D configurations. Among them, the graphene-MoSSe hybrid phototransistor exhibits optoelectronic properties superior to those of its binary counterparts. The device exhibits extremely high photoresponsivity (>104 A/W), low noise equivalent power (∼10-14 W/Hz0.5), and higher specific detectivity (∼1011 jones) in the wide UV-NIR (365-810 nm) range with excellent gate tunability. The broad-band light absorption of MoSSe, ultrafast charge transport in graphene, and controllable defect engineering in MoSSe makes this device extremely attractive. Our work demonstrates the large-area scalability with the wafer-scale production of MoS2xSe2(1-x) alloys, having important implications toward the facile and scalable fabrication of high-performance optoelectronic devices and providing important insights into the fundamental interactions between van der Waals materials.

10.
ACS Appl Mater Interfaces ; 14(4): 5775-5784, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35068147

RESUMO

Recent progress in the synthesis of highly stable, eco-friendly, cost-effective transition-metal dichalcogenide (TMDC) quantum dots (QDs) with their broadband absorption spectra and wavelength selectivity features have led to their increasing use in broadband photodetectors. With the solution-based processing, we demonstrate a superlarge (∼0.75 mm2), ultraviolet-visible (UV-vis) broadband (365-633 nm) phototransistor made of WS2 QDs-decorated chemical vapor deposited (CVD) graphene as the active channel with extraordinary stability and durability under ambient conditions (without any degradation of photocurrent until 4 months after fabrication). Here, colloidal zero-dimensional (0D) WS2 QDs are used as the photoabsorbing material, and graphene acts as the conducting channel. A high photoresponsivity (3.1 × 102 A/W), moderately high detectivity (∼8.9 × 108 Jones), and low noise equivalent power (∼9.7 × 10-11 W/Hz0.5) are obtained at a low bias voltage (Vds = 1 V) at an illumination of 365 nm with optical power as low as ∼0.8 µW/cm2, which can be further tuned by modulating the gate bias. While comparing the photocurrent between two different morphologies of WS2 [QDs and two-dimensional (2D) nanosheets], a significant enhancement of photocurrent is observed in the case of QD-based devices. Ab initio density functional theory (DFT)-based calculations further support our observation, revealing the role of quantum confinement in enhanced photoresponse. Our work reveals a strategy toward developing a scalable, cost-effective, high-performance hybrid mixed-dimensional (2D-0D) photodetector with graphene-WS2 QDs for next-generation optoelectronic applications.

11.
Int J Biol Macromol ; 190: 978-988, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536479

RESUMO

Pectin grafted polyacrylic copolymer hydrogels were made by free radical crosslink copolymerization of acrylic acid (AA) and acrylamide (AM) in an aqueous solution of pectin. N'N-methylene bis acrylamide (MBA) was used as a crosslinker. During the polymerization reaction the attapulgite (APG) filler was also incorporated in situ into the network of the copolymer gel. Several filled hydrogels were prepared by varying the amount of pectin and APG filler. These hydrogels were characterized by FTIR, 13C NMR, XRD, TGA, SEM, mechanical properties, DMA, swelling, diffusion characteristics and network parameters. The release kinetics of a model drug diltiazem hydrochloride (DT) was studied with these hydrogels. The wt% of pectin, APG and MBA was optimized with a central composite design (CCD) model of response surface methodology (RSM) with equilibrium swelling ratio (ESR), drug adsorption (mg/100 mg gel) and drug release% in 16 h as response. Accordingly, the hydrogel prepared with 5:1 AA:AM molar ratio, 25 wt% monomer concentration, 1% each of initiator and MBA concentration, 18 wt% pectin and 2 wt% APG showed an optimized ESR of 17.75, drug loading of 27.58 and a drug release % of 92.5 in 16 h at a solution pH of 7.4.


Assuntos
Resinas Acrílicas/química , Diltiazem/farmacologia , Géis/química , Compostos de Magnésio/química , Pectinas/química , Compostos de Silício/química , Adsorção , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Preparações de Ação Retardada/farmacologia , Difusão , Liberação Controlada de Fármacos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Cinética , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Fatores de Tempo , Difração de Raios X
12.
Carbohydr Polym ; 258: 117704, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33593574

RESUMO

In comparison to conventional nanoparticles biopolymer like chitosan based nanoparticles will be of much lower cost, non-toxic and more compatible with polymer membranes. As a cationic polymer surfactant chitosan is able to generate polymer nanoparticles during emulsion polymerization of methyl methacrylate. Accordingly, the organophilicity of polyvinyl chloride (PVC) membrane was significantly improved by incorporating chitosan grafted polymethyl methacrylate (PMMA) nanopolymers(NPs) prepared by emulsion polymerization. The NPs and the PVC-NP blend membranes were characterized. The chitosan: MMA wt. ratio and the wt.% of NP in PVC were optimized by a 5-level factorial design. The membranes prepared from i) PVC, PVC blended with 6.5 wt.% each of ii) chitosan, iii) PMMA and iv) NP showed a pervaporative flux (kg/m2h)/acetone selectivity of 0.439/24.31, 0.477/21.56, 0.461/23.41 and 0.502/27.96, respectively for 5.6 wt.% acetone in feed. The sorption and pervaporation data showed close fitting to ENSIC and six-parameter solution-diffusion model, respectively.

13.
ACS Appl Bio Mater ; 4(7): 5485-5493, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006721

RESUMO

Attachment of microbial bodies including the corona virus on the surface of personal protective equipment (PPE) is found to be potential threat of spreading infection. Here, we report the development of a triboelectroceutical fabric (TECF) consisting of commonly available materials, namely, nylon and silicone rubber (SR), for the fabrication of protective gloves on the nitrile platform as model wearable PPE. A small triboelectric device (2 cm × 2 cm) consisting of SR and nylon on nitrile can generate more than 20 V transient or 41 µW output power, which is capable of charging a capacitor up to 65 V in only ∼50 s. The importance of the present work relies on the TECF-led antimicrobial activity through the generation of an electric current in saline water. The fabrication of TECF-based functional prototype gloves can generate hypochlorite ions through the formation of electrolyzed water upon rubbing them with saline water. Further, computational modelling has been employed to reveal the optimum structure and mechanistic pathway of antimicrobial hypochlorite generation. Detailed antimicrobial assays have been performed to establish effectiveness of such TECF-based gloves to reduce the risk from life-threatening pathogen spreading. The present work provides the rationale to consider the studied TECF, or other materials with comparable properties, as a material of choice for the development of self-sanitizing PPE in the fight against microbial infections including COVID-19.


Assuntos
Anti-Infecciosos/química , Eletricidade , Equipamento de Proteção Individual , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Nylons/química , Equipamento de Proteção Individual/microbiologia , Equipamento de Proteção Individual/virologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Reciclagem , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Elastômeros de Silicone/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
ACS Appl Bio Mater ; 4(7): 5471-5484, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006728

RESUMO

Centers for Disease Control and Prevention (CDC) warns the use of one-way valves or vents in face masks for potential threat of spreading COVID-19 through expelled respiratory droplets. Here, we have developed a nanoceutical cotton fabric duly sensitized with non-toxic zinc oxide nanomaterial for potential use as a membrane filter in the one-way valve for the ease of breathing without the threat of COVID-19 spreading. A detailed computational study revealed that zinc oxide nanoflowers (ZnO NFs) with almost two-dimensional petals trap SARS-CoV-2 spike proteins, responsible to attach to ACE-2 receptors in human lung epithelial cells. The study also confirmed significant denaturation of the spike proteins on the ZnO surface, revealing removal of the virus upon efficient trapping. Following the computational study, we have synthesized ZnO NF on a cotton matrix using a hydrothermal-assisted strategy. Electron-microscopic, steady-state, and picosecond-resolved spectroscopic studies confirm attachment of ZnO NF to the cotton (i.e., cellulose) matrix at the atomic level to develop the nanoceutical fabric. A detailed antimicrobial assay using Pseudomonas aeruginosa bacteria (model SARS-CoV-2 mimic) reveals excellent antimicrobial efficiency of the developed nanoceutical fabric. To our understanding, the nanoceutical fabric used in the one-way valve of a face mask would be the choice to assure breathing comfort along with source control of COVID-19 infection. The developed nanosensitized cloth can also be used as an antibacterial/anti CoV-2 washable dress material in general.


Assuntos
Anti-Infecciosos/química , COVID-19/prevenção & controle , Nanoestruturas/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , COVID-19/virologia , Fibra de Algodão/análise , Humanos , Máscaras , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Reciclagem , Aerossóis e Gotículas Respiratórios/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Óxido de Zinco/química
15.
ACS Appl Mater Interfaces ; 12(39): 44345-44359, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32864953

RESUMO

The interface of transition-metal dichalcogenides (TMDCs) and high-k dielectric transition-metal oxides (TMOs) had triggered umpteen discourses because of the indubitable impact of TMOs in reducing the contact resistances and restraining the Fermi-level pinning for the metal-TMDC contacts. In the present work, we focus on the unresolved tumults of large-area TMDC/TMO interfaces, grown by adopting different techniques. Here, on a pulsed laser-deposited MoS2 thin film, a layer of TiO2 is grown by atomic layer deposition (ALD) and pulsed laser deposition (PLD). These two different techniques emanate the layer of TiO2 with different crystallinities, thicknesses, and interfacial morphologies, subsequently influencing the electronic and optical properties of the interfaces. Contrasting the earlier reports of n-type doping at the exfoliated MoS2/TiO2 interfaces, the large-area MoS2/anatase-TiO2 films had realized a p-type doping of the underneath MoS2, manifesting a boost in the extent of p-type doping with increasing thickness of TiO2, as emerged from the X-ray photoelectron spectra. Density functional analysis of the MoS2/anatase-TiO2 interfaces, with pristine and interfacial defect configurations, could correlate the interdependence of doping and the terminating atomic surface of TiO2 on MoS2. The optical properties of the interface, encompassing photoluminescence, transient absorption and z-scan two-photon absorption, indicate the presence of defect-induced localized midgap levels in MoS2/TiO2 (PLD) and a relatively defect-free interface in MoS2/TiO2 (ALD), corroborating nicely with the corresponding theoretical analysis. From the investigation of optical properties, we indicate that the MoS2/TiO2 (PLD) interface may act as a promising saturable absorber, having a significant nonlinear response for the sub-band-gap excitations. Moreover, the MoS2/TiO2 (PLD) interface had exemplified better phototransport properties. A potential application of MoS2/TiO2 (PLD) is demonstrated by the fabrication of a p-type phototransistor with the ionic-gel top gate. This endeavor to analyze and perceive the MoS2/TiO2 interface establishes the prospectives of large-area interfaces in the field of optics and optoelectronics.

16.
ACS Appl Mater Interfaces ; 12(6): 7317-7325, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31933353

RESUMO

Mixed-dimensional van der Waals nanohybrids (MvNHs) of two-dimensional transition-metal dichalcogenides (TMDs) and zero-dimensional perovskites are highly promising candidates for high-performance photonic device applications. However, the growth of perovskites over the surface of TMDs has been a challenging task due to the distinguishable surface chemistry of these two different classes of materials. Here, we demonstrate a synthetic route for the design of MoSe2-CsPbBr3 MvNHs using a bifunctional ligand, i.e., 4-aminothiophenol. Close contact between these two materials is established via a bridge that leads to the formation of a donor-bridge-acceptor system. The presence of the small conjugated ligand facilitates faster charge diffusion across MoSe2-CsPbBr3 interfaces. Density functional theory calculations confirm the type-II band alignment of the constituents within the MvNHs. The MoSe2-CsPbBr3 nanohybrids show much higher photocurrent (∼2 × 104-fold photo-to-dark current ratio) as compared to both pure CsPbBr3 nanocrystals and pristine MoSe2 nanosheets owing to the synergistic effect of pronounced light-matter interactions followed by efficient charge separation and transportation. This study suggests the use of a bifunctional ligand to construct a nanohybrid system to tune the optoelectronic properties for potential applications in photovoltaic devices.

17.
Microsyst Nanoeng ; 6: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34567649

RESUMO

Metal oxide resistive gas sensors suffer from poor selectivity that restricts their practical applicability. Conventional sensor arrays are used to improve selectivity which increased the system complexity. Here, we have proposed a novel NiO/ZnO-based p-n junction single-diode device for selective sensing of several volatile organic compounds (VOCs) simultaneously by tuning bias voltage. The operating voltage was varied between 3 and 5 volts to achieve selective sensing of 2-propanol (19.1 times for 95 ppm with response and recovery times of 70 s and 55 s respectively' at 3 volts), toluene (20.1 times for 95 ppm with response and recovery times of 100 s and 60 s respectively, at 4 volts), and formaldehyde (11.2 times for 95 ppm with response and recovery times of 88 s and 54 s respectively, at 5 volts). A probable mechanism of the tunable selectivity with operating bias voltage due to increase in surface carriers with increasing voltage was hence put forth. Thus, this device may play an important role to develop future selective multiple VOC sensor thereby replacing standard sensor arrays.

18.
Int J Biol Macromol ; 144: 801-812, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669271

RESUMO

Several functional adsorbents were synthesized by copolymerizing acrylic acid (AA) and hydroxyethyl methacrylate (HEMA) in the presence of sodium alginate in water. Silver chloride nano particles (AgClNP) were also incorporated in the polymer matrix by coprecipitation method. The resulting composite type functional adsorbents were used for adsorption of a synthetic dye, namely, brilliant cresyl blue (BCB) from water in batch and in continuous mode in a fixed bed column. The formation of the adsorbent, AgClNP and its incorporation in the polymer matrix were characterized while pH sensitivity was studied with pH reversibility test and point zero charge (PZC) study. The network parameters were also determined. The synthesis and process parameters were optimized with a central composite design (CCD) of response surface methodology (RSM) with respect to adsorption capacity as response in a batch study and the adsorbent showing optimum performance was further used for column study in a fixed bed. The effect of bed height, influent dye concentration and volumetric flow rate on dye adsorption were studied and the adsorption data showed close fitting to Adam-Bohart and Clark model. The photocatalytic degradation of the heterocyclic dye by the AgClNP incorporated adsorbent in the presence of UV radiation was also studied.


Assuntos
Alginatos/química , Nanoestruturas/química , Oxazinas/química , Oxazinas/isolamento & purificação , Polímeros/química , Compostos de Prata/química , Água/química , Adsorção , Catálise , Cinética , Processos Fotoquímicos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
19.
Carbohydr Polym ; 200: 305-320, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30177171

RESUMO

Bio-composite type functional adsorbents were prepared by integrating kappa-carrageenan (KC) and copolymers of poly (N-vinylpyrrolidone-co-acrylic acid) (CP). The CP was synthesized free radically from its monomers N-vinylpyrrolidone (NVP), acrylic acid (AA) and methylene bis-acrylamide (MBA) crosslinker comonomer in the presence of KC in water. The adsorbents were characterized and used for separation of Safranine T (ST) and brilliant cresyl blue (BCB) cationic dye mixtures from water. The synthesis and process parameters for adsorption were optimized with central composite design (CCD) of the response surface methodology (RSM). Accordingly, the CPKC bio-composite adsorbent with optimized composition of 2.5 wt% of KC, 1.5 wt% of MBA and NVP: AA molar ratio of 1.3:1 showed a high adsorption capacity of 362.5 mg/g for ST and 398 mg/g of BCB dye for a binary mixture containing 100 mg/L each of the dye in a solution pH of 7 and adsorbent dose of 0.25 g/L.


Assuntos
Carragenina/química , Corantes/química , Corantes/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Água/química , Acrilatos/química , Adsorção , Concentração de Íons de Hidrogênio , Polimerização , Povidona/química
20.
Nanotechnology ; 29(50): 505301, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30226471

RESUMO

Nanopatterning of the active layer with feature size comparable to the wavelength of visible light is a popular strategy for improving the performance of optoelectronic devices, as these structures enhance the optical path length by light trapping due to combined contribution of multiple scattering, diffraction, and antireflection. Here, we report the fabrication of ZnO/CdS self-biased heterojunction photodetectors on soft lithographically patterned PEDOT:PSS layers with grating geometry. The present study combines the robustness of inorganic devices along with the convenience of easy patterning capability of an organic PEDOT:PSS layer. Patterns with two different line widths (L P = 350 nm, and Lp = 750 nm) have been used in this study to understand the influence of feature dimension on the device performance. We observe enhanced photoluminescence on patterned devices, in comparison to devices fabricated on flat PEDOT:PSS films, which is attributed to the increased interfacial area between the organic and inorganic layers. The spectral response [R( λ )] and specific detectivity [D * ( λ )] are found to be higher for the devices with Lp = 350 nm as compared to other devices due to enhanced absorption within the structures due to confinement of light, which also results in reduced reflectance in devices with Lp = 350 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...