Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(10): 4138-4145, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37462953

RESUMO

In recent years, nucleic acid has emerged as a versatile molecule that has been strategically used in material synthesis and biomedical applications. Keeping in mind the presence of the phosphate group, a glass former in the nucleic acids, we synthesized a transparent glass-like material by the thermal treatment of nucleic acids (DNA and RNA) at 900 °C at atmospheric pressure. Characterization of this material by transmission electron microscopy, X-ray photoelectron spectroscopy, and confocal fluorescence microscopy suggested the presence of in situ-formed nanodiamonds within the phosphate glass matrix. The molecular structure of glass investigated by X-ray photoelectron and infrared spectroscopy indicated a nearly equal proportion of metaphosphates and smaller phosphate units (pyro- and ortho-phosphate) that form the phosphate glass matrix. Thereafter, in vitro biological experiments showed that the nucleic acid-derived glass was non-toxic and cytocompatible, enhanced extracellular matrix secretion, and increased intracellular alkaline phosphatase activity, with potential application in hard tissue engineering. Our work offers insights into nanodiamond synthesis at atmospheric pressure and proves that nucleic acids could be used as a precursor to making an innovative glass-ceramic biomaterial.

2.
Gels ; 7(2)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066326

RESUMO

In the present study, we report the development of poly (vinyl alcohol) (PVA) and chitosan oligosaccharide (COS)-based novel blend films. The concentration of COS was varied between 2.5-10.0 wt% within the films. The inclusion of COS added a brown hue to the films. FTIR spectroscopy revealed that the extent of intermolecular hydrogen bonding was most prominent in the film that contained 5.0 wt% of COS. The diffractograms showed that COS altered the degree of crystallinity of the films in a composition-dependent manner. As evident from the thermal analysis, COS content profoundly impacted the evaporation of water molecules from the composite films. Stress relaxation studies demonstrated that the blend films exhibited more mechanical stability as compared to the control film. The impedance profiles indicated the capacitive-dominant behavior of the prepared films. Ciprofloxacin HCl-loaded films showed excellent antimicrobial activity against Escherichia coli and Bacillus cereus. The prepared films were observed to be biocompatible. Hence, the prepared PVA/COS-based blend films may be explored for drug delivery applications.

3.
Biotechnol Lett ; 38(8): 1397-404, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27146206

RESUMO

OBJECTIVE: To develop a cost-effective, non-toxic and xeno-free freezing solution for the preservation of adipose tissue-derived stem cells (hADSC) with a long shelf-life. RESULTS: The potential of various hydrocolloids and organic osmolytes as cryoprotectants and individual components of phosphate buffered saline (PBS) as carrier media were evaluated to formulate a freezing solution for the cryopreservation of hADSCs. Among the hydrocolloids, the highest viability, 55 %, was achieved with post-thawed (after 48 h storage at -80 °C) hADSCs cryopreserved in 10 % (v/v) polyvinylpyrrolidone (PVP) using PBS as carrier media. 0.9 % NaCl was a superior carrier medium resulting an enhanced cell viability (70 %) when used in 10 % PVP than other components of PBS. A higher cell viability (81 %) was achieved when 10 % PVP/0.9 % NaCl was supplemented with 60 mM ectoin. The cryopreserved cells retained normal cytoskeletal distribution pattern and adipogenic and osteogenic differentiation ability during 14 and 21 days of incubation. CONCLUSION: A serum-free and non-toxic 10 % PVP/0.9 % NaCl/60 mM ectoin freezing solution was developed for cryopreservation of hADSC for application in tissue engineering and regenerative medicine.


Assuntos
Tecido Adiposo/citologia , Criopreservação/métodos , Células-Tronco Mesenquimais/citologia , Congelamento , Humanos
4.
Dalton Trans ; 45(4): 1679-92, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26699084

RESUMO

Mesoporous Sm(3+) doped CeO2 (Ce-Sm) with a nanocrystalline framework, a high content of Ce(3+) and surface area (184 m(2) g(-1)), have been synthesized through a facile aqueous solution-based surfactant assisted route by using inorganic precursors and sodium dodecyl sulphate as a template. The XRD results indicate that the calcined Ce-Sm and even the as-prepared material have a cubic fluorite structure of CeO2 with no crystalline impurity phase. XRD studies along with HRTEM results confirmed the formation of mesoporous nanocrystalline CeO2 at a lower temperature as low as 100 °C. A detailed analysis revealed that Sm(3+) doping in CeO2 has increased the lattice volume, surface area, mesopore volume and engineered the surface defects. Higher concentrations of Ce(3+) and oxygen vacancies of Ce-Sm resulted in lowering of the band gap. It is evident from the H2-TPR results that Sm(3+) doping in CeO2 strongly modified the reduction behavior of CeO2 by shifting the bulk reduction at a much lower temperature, indicating increased oxygen mobility in the sample which enables enhanced oxygen diffusion at lower temperatures, thus promoting reducibility, i.e., the process of Ce(4+)→ Ce(3+). UV-visible transmission studies revealed improved autocatalytic performance due to easier Ce(4+)/Ce(3+) recycling in the Sm(3+) doped CeO2 nanoparticles. From the in vitro cytotoxicity of both pure CeO2 and Sm(3+) doped CeO2 calcined at 500 °C in a concentration as high as 100 µg mL(-1) (even after 120 h) on MG-63 cells, no obvious decrease in cell viability is observed, confirming their excellent biocompatibility. The presence of an increased amount of surface hydroxyl groups, mesoporosity, and surface defects have contributed towards an improved autocatalytic activity of mesoporous Ce-Sm, which appear to be a potential candidate for biomedical (antioxidant) applications.


Assuntos
Antioxidantes/química , Cério/química , Nanopartículas/química , Samário/química , Tensoativos/química , Temperatura , Antioxidantes/síntese química , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Tamanho da Partícula , Porosidade , Soluções , Propriedades de Superfície , Água/química
5.
J Mater Sci Mater Med ; 26(8): 220, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26243402

RESUMO

The present study describes the preparation of extracellular matrix (ECM; from porcine omentum) based chitosan composite films for wound dressing applications. The films were prepared by varying the ECM content, whereas, the amount of chitosan was kept constant. The interactions amongst the components of the films were analyzed by FTIR and XRD studies. The films were thoroughly characterized for surface hydrophilicity, moisture retention capability, water vapor permeability, mechanical and biocompatibility. FTIR study indicated that both chitosan and ECM were present in their native form and did not lose their activity. XRD analysis suggested composition dependent change in the crystallinity of the films. The mechanical properties suggested that the composite films had sufficient properties to be used for wound dressing applications. An increase in the ECM content resulted in better hydrophilicity of the films and hence better the moisture retention capacity and retardant water vapor transmission rate property of the composite films. The films were found to be biocompatible to both blood and adipose tissue derived stem cells. In gist, the prepared films may be explored as wound dressing materials.


Assuntos
Bandagens , Quitosana/química , Matriz Extracelular/química , Cicatrização , Animais , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Proliferação de Células , Cabras , Humanos , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Teste de Materiais , Permeabilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/citologia , Sus scrofa , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...