Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 152(10): 104107, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171214

RESUMO

We present a strategy to construct guiding distribution functions (GDFs) based on variance minimization. Auxiliary dynamics via GDFs mitigates the exponential growth of variance as a function of bias in Monte Carlo estimators of large deviation functions. The variance minimization technique exploits the exact properties of eigenstates of the tilted operator that defines the biased dynamics in the nonequilibrium system. We demonstrate our techniques in two classes of problems. In the continuum, we show that GDFs can be optimized to study the interacting driven diffusive systems where the efficiency is systematically improved by incorporating higher correlations into the GDF. On the lattice, we use a correlator product state ansatz to study the 1D weakly asymmetric simple exclusion process. We show that with modest resources, we can capture the features of the susceptibility in large systems that mark the phase transition from uniform transport to a traveling wave state. Our work extends the repertoire of tools available to study nonequilibrium properties in realistic systems.

2.
Phys Rev E ; 100(2-1): 022101, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574680

RESUMO

The open asymmetric simple exclusion process (ASEP) has emerged as a paradigmatic model of nonequilibrium behavior, in part due to its complex dynamical behavior and wide physical applicability as a model of driven diffusion. We compare the dynamical phase behavior of the one-dimensional (1D) ASEP and the multi-lane ASEP, a previously unstudied extension of the 1D model that may be thought of as a finite-width strip of the fully two-dimensional (2D) system. Our characterization employs large deviation theory (LDT), matrix product states (MPS), and the density matrix renormalization group (DMRG) algorithm, to compute the current cumulant generating function and its derivatives, which serve as dynamical order parameters. We use this measure to show that when particles cannot exit or enter the lattice vertically, the phase behavior of the multi-lane ASEP mimics that of its 1D counterpart, exhibiting the macroscopic and microscopic signatures of the maximal current, shock, and high-density-low-density coexistence phases. Conversely, when particles are allowed to freely enter and exit the lattice, no such transition is observed. This contrast emphasizes the complex interplay between latitudinal and longitudinal hopping rates and the effect of current biasing. Our results support the potential of tensor networks as a framework to understand classical nonequilibrium statistical mechanics.

3.
Phys Rev Lett ; 120(21): 210602, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883166

RESUMO

We describe a framework to reduce the computational effort to evaluate large deviation functions of time integrated observables within nonequilibrium steady states. We do this by incorporating an auxiliary dynamics into trajectory based Monte Carlo calculations, through a transformation of the system's propagator using an approximate guiding function. This procedure importance samples the trajectories that most contribute to the large deviation function, mitigating the exponential complexity of such calculations. We illustrate the method by studying driven diffusion and interacting lattice models in one and two spatial dimensions. Our work offers an avenue to calculate large deviation functions for high dimensional systems driven far from equilibrium.

4.
J Chem Phys ; 148(12): 124120, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604886

RESUMO

Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...