Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142665, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906192

RESUMO

Veterinary antibiotics have become an emerging pollutant in water and wastewater sources due to excess usage, toxicity and resistance to traditional water and wastewater treatment. The present study explored the degradation of a model antibiotic- Florfenicol (FF) using electrochemical oxidation (EO) with Ti-RuO2/IrO2 anode. The anode material was characterized using SEM-EDS studies expressing stable structure and optimal interaction of the neighboring metal oxides with each other. The EDS results showed the presence of Ru, Ir, Ti, O and C elements with 6.44%, 2.57%, 9.61%, 52.74% and 28.64% atomic weight percentages, respectively. Optimization studies revealed pH 5, 30 mA cm-2 current density and 0.05 M Na2SO4 for 5 mg L-1 FF achieved 90% TOC removal within 360 min treatment time. The degradation followed pseudo-first order kinetics. LC-Q-TOF-MS studies revealed six predominant byproducts illustrating hydroxylation, deflourination, and dechlorination to be the major degradation mechanisms during the electrochemical oxidation of FF. Ion chromatography studies revealed an increase in Cl-, F- and NO3- ions as treatment time progressed with Cl- decreasing after the initial phase of the treatment. Toxicity studies using Zebrafish (Danio rerio) embryo showed the treated sample to be toxic inducing developmental disorders such as pericardial edema, yolk sac edema, spinal curvature and tail malformation at 96 h post fertilization (hpf). Compared to control, delayed hatching and coagulation were observed in treated embryos. Overall, this study sets the stage for understanding the effect of mixed metal oxide (MMO) anodes on the degradation of veterinary antibiotic-polluted water and wastewater sources using electrochemical oxidation.

2.
Chemosphere ; 351: 141124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211796

RESUMO

Steroid hormones (SHs) are among the important classes of Contaminants of Emerging Concern (CECs) whose detection in aquatic environments is vital due to their potential adverse health impacts. Their detection is challenging because of their lower stability in natural conditions and low concentrations. This study reports the presence of steroid hormones in a major river system, the Periyar River, in Kerala (India). Water samples were collected from thirty different river locations in the case of SHs and five locations within these in the case of other CECs. These were subjected to LC-MS/MS and LC-Q-ToF/MS analyses. Five SHs, estriol, estrone, 17 ß estradiol, progesterone, and hydroxy progesterone, were separated and targeted using MS techniques. The studies of the water samples confirmed the presence of the first three estrogens in different sampling sites, with estrone present in all the sampling sites. The concentration of estrone was detected in the range from 2 to 15 ng/L. Estriol and estradiol concentrations ranged from 1.0 to 5 ng/L and 1-6 ng/L, respectively. The hormones at some selected sites were continuously monitored for seven months. The chosen areas include the feed water sites for the drinking water treatment plants across the river. The monthly data revealed that estrone is the only SHs detected in all the samples in the selected months. The highest concentration of SH was found in August. Twelve CECs belonging to pharmaceuticals and personal care products were identified and quantified. In addition, 31 other CECs were also identified using non-target analysis. A detailed study of the hormone mapping reported here is the first from any South Indian River.


Assuntos
Estrona , Poluentes Químicos da Água , Estrona/análise , Cromatografia Líquida/métodos , Progesterona , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Estrogênios/análise , Estradiol/análise , Estriol/análise , Rios
3.
Ultrason Sonochem ; 101: 106700, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006821

RESUMO

The degradation of recalcitrant organic pollutants by sulphate radical (SO4•-) represents one of the most recent developments in oxidation-based water treatment. In most cases, persulfate (PS) acts as a precursor of sulphate radicals. This study employed ultrasound-activated PS to generate reactive species, facilitating the degradation of bisphenol S (BPS), a well-known contaminant of emerging concern (CECs). An ultrasound with a frequency of 620 kHz and 80 W power was utilised for the degradation studies. The applied oxidation system successfully resulted in the complete degradation of BPS in both pure and real environmental water samples. Additionally, the Chemical oxygen demand (COD) was reduced to an acceptable limit in both matrices, with a reduction of 85 % in pure water and 73 % in river water. The degradation was monitored by varying chemical parameters such as pH, inorganic ions, and organics concentration. The results indicate that under specific pH conditions, the degradation efficiency followed the order of pH 3 > 4 > 7 > 11. The presence of coexisting matrices suppressed the efficiency by scavenging the reactive species. Utilizing high-resolution mass spectrometry (HRMS) analysis, this study identified seven intermediate products during identified during the degradation of BPS. Furthermore, a comprehensive mechanism has been deduced for the transformation and degradation process. All the results presented in this study underscore the applicability of the US/PS system in the removal of CECs.

4.
Chemosphere ; 345: 140203, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37734498

RESUMO

The degradation of pollutants by a non-radical pathway involving singlet oxygen (1O2) is highly relevant in advanced oxidation processes. Photosensitizers, modified photocatalysts, and activated persulfates can generate highly selective 1O2 in the medium. The selective reaction of 1O2 with organic pollutants results in the evolution of different intermediate products. While these products can be identified using mass spectrometry (MS) techniques, predicting a proper degradation mechanism in a 1O2-based process is still challenging. Earlier studies utilized MS techniques in the identification of intermediate products and the mechanism was proposed with the support of theoretical calculations. Although some reviews have been reported on the generation of 1O2 and its environmental applications, a proper review of the degradation mechanism by 1O2 is not yet available. Hence, we reviewed the possible degradation pathways of organic contaminants in 1O2-mediated oxidation with the support of density functional theory (DFT). The Fukui function (FF, f-, f+, and f0), HOMO-LUMO energies, and Gibbs free energies obtained using DFT were used to identify the active site in the molecule and the degradation mechanism, respectively. Electrophilic addition, outer sphere type single electron transfer (SET), and addition to the hetero atoms are the key mechanisms involved in the degradation of organic contaminants by 1O2. Since environmental matrices contain several contaminants, it is difficult to experiment with all contaminants to identify their intermediate products. Therefore, the DFT studies are useful for predicting the intermediate compounds during the oxidative removal of the contaminants, especially for complex composition wastewater.


Assuntos
Oxigênio Singlete , Águas Residuárias , Oxigênio Singlete/química , Teoria da Densidade Funcional , Oxirredução , Espectrometria de Massas
5.
Chemosphere ; 343: 140265, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758074

RESUMO

A new class of environmental pollutants that have become a significant concern for the entire world's population over the last few decades are pharmaceutical contaminants due to the potential risks they pose to the environment and human health. An investigation on the photocatalytic degradation of four different model pharmaceutical contaminants: Tetracycline (TCT), Sulfamethoxazole (SMX), Chloroquine (CLQ), and Diclofenac (DCF) has been carried out using ZnO nanoparticles as the photocatalyst, and sunlight as the source of energy in a batch photocatalytic reactor. This process resulted in the degradation of about 51% for TCT, 65% for SMX, 61% for CLQ, and 55% for DCF within 30 min of solar irradiation. Complete degradation and COD reduction were achieved after a prolonged irradiation. The slow decay is attributed to the evolution of the intermediate compounds, which were identified using the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) method. The possible intermediates formed were identified for each molecule (i.e., TCT having 6 products, SMX, having 4 products, DCF having 8 products and CLQ having 8 products), and the mechanism for each pollutant is proposed. The effect on distinct operational parameters, like catalyst loading, and pH, environmentally relevant parameters such as ionic effect, and multiple contaminants system were investigated. It was found that the anions such as Cl-, SO42-, CO32-, HCO3-, NO3-, F-, Br-, and I-both individually as well as in combination had no effect on the degradation except for SMX. For multiple component systems, when two pollutants are mixed, each pollutant affects the degradation of the other and in the case of CLQ/TCT system, CLQ inhibits the degradation of TCT drastically. The study demonstrates that ZnO is an effective and convenient option for photocatalytic decontamination of water sources contaminated with a variety of pharmaceutical contaminants.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Óxido de Zinco , Humanos , Luz Solar , Óxido de Zinco/química , Água , Descontaminação , Diclofenaco/química , Sulfametoxazol , Poluentes Ambientais/análise , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 857(Pt 2): 159043, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36174692

RESUMO

Aromatic hydrocarbons (AHs) are toxic environmental contaminants presented in most of the environmental matrices. Advanced oxidation processes (AOPs) for the removal of AHs in the account of complete mineralization from various environmental matrices have been reviewed in this paper. An in-depth discussion on various AOPs for mono (BTEX) and polyaromatic hydrocarbons (PAHs) and their derivatives is presented. Most of the AOPs were effective in the removal of AHs from the aquatic environment. A comparative study on the degradation of various AHs revealed that the oxidation of the AHs is strongly dependent on the number of aromatic rings and the functional groups attached to the ring. The formation of halogenated and nitrated derivatives of AHs in the real contaminated water containing chloride, nitrite, and nitrate ions seems to be a challenge in using the AOPs in real systems. The phenolic compounds, quinone, alcohols, and aliphatic acids are the important byproducts formed during the oxidation of AHs, initiated by the attack of reactive oxygen species (ROS) on their electron-rich center. In conclusion, AOPs are the adaptable method for the removal of AHs from different environmental matrices. The persulfate-based AOPs were applied in the soil phase removal as an in situ chemical oxidation of AHs. Moreover, the combination of AOPs will be a conclusive solution to avoid or minimize unexpected or other toxic intermediate products and to obtain rapid oxidation of AHs.


Assuntos
Hidrocarbonetos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Oxirredução , Poluentes do Solo/análise
7.
Ultrason Sonochem ; 88: 106081, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35777195

RESUMO

The present review emphasizes the role of hydrodynamic cavitation (HC) and acoustic cavitation in clean and green technologies for selected fuels (of hydrocarbon origins such as gasoline, naphtha, diesel, heavy oil, and crude oil) processing applications including biodiesel production. Herein, the role of cavitation reactors, their geometrical parameters, physicochemical properties of liquid media, liquid oxidants, catalyst loading, reactive oxygen species, and different types of emulsification and formation of radicals, formation as well as extraction of formed by-products are systematically reviewed. Among all types of HC reactors, vortex diode and single hole orifices revealed more than 95 % desulfurization yield and a 20 % viscosity reduction in heavy oil upgrading, while multi-hole orifice (100 holes) and slit Venturi allowed obtaining the best biodiesel production processes in terms of high (%) yield, low cost of treatment, and short processing time (5 min; 99 % biodiesel; 4.80 USD/m3). On the other hand, the acoustic cavitation devices are likely to be the most effective in biodiesel production based on ultrasonic bath (90 min; 95 %; 6.7 $/m3) and desulfurization treatment based on ultrasonic transducers (15 min; 98.3 % desulfurization; 10.8 $/m3). The implementation of HC-based processes reveals to be the most cost-effective method over acoustic cavitation-based devices. Finally, by reviewing the ongoing applications and development works, the limitations and challenges for further research are addressed emphasizing the cleaner production and guidelines for future scientists to assure obtaining comprehensive data useful for the research community.


Assuntos
Biocombustíveis , Hidrocarbonetos , Catálise , Estudos de Viabilidade , Hidrodinâmica
8.
Chemosphere ; 294: 133788, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35104544

RESUMO

This study focused on the development of a nano-adsorbent for contaminant removal without the use of any external energy. An eco-friendly Fe3O4@MgO core-shell nanocomposite was synthesized and tested for the removal of a heavy metal, lead (Pb2+) and a dye, rhodamine B (RhB). The addition of H2O2 into the system enabled the self-mixing of the aqueous solution containing Fe3O4@MgO through the generation of bubbles. This system showed an excellent removal efficiency of 99% in just 15 min for Pb2+ and 120 min for RhB, which is far better than the control experiment (without H2O2). The cation exchange mechanism dominated in the removal of heavy metals, while the adsorptive removal of dye proceeded through the H-bonding between Mg(OH)2 and dye molecules. The removal efficiency increased exponentially with the increase of H2O2 at the optimal concentration of 5% and it was effective over a wide pH range. Moreover, the performance of the Fe3O4@MgO-H2O2 system was verified for other heavy metals such as Cd, Ni, Zn, Co, and Cu, demonstrating that the Fe3O4@MgO-H2O2 system can be widely implemented in the treatment of real water matrices contaminated with heavy metals and organic dyes.


Assuntos
Metais Pesados , Nanocompostos , Poluentes Químicos da Água , Adsorção , Corantes , Peróxido de Hidrogênio , Cinética , Óxido de Magnésio , Metais Pesados/química , Água , Poluentes Químicos da Água/química
9.
Environ Sci Pollut Res Int ; 28(26): 34167-34186, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33970421

RESUMO

Extensive use of surfactants in numerous fields resulted in their discharge into various environmental compartments including soil, sediment, and water. Alcohol ethoxysulfates (AES) together with alcohol ethoxylates (AE), alkyl sulfates (AS), and linear alkyl benzene sulfonates (LAS) find wide variety of applications in consumer products including both domestic and industrial applications. Consequently, all these surfactants pose several concerns to both aquatic and human health. In the context of environmental impacts, AES has almost equal importance as that of LAS though the literature on this topic is only emerging. This review provides a detailed overview on the various aspects of the anionic surfactant, AES, such as toxicity of AES, its fate in the ecosystem, technical advancements in the area of identification and quantification, its occurrence and distribution in different environmental compartments spanning across the world, and finally a remark of its potential removal strategy from the environment.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Biodegradação Ambiental , Ecossistema , Humanos , Sulfatos/análise , Tensoativos/análise , Poluentes Químicos da Água/análise
10.
J Colloid Interface Sci ; 597: 94-103, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33862450

RESUMO

In this study, a Janus Fe/C3N4 micromotor driven by a chromate-hydrogen peroxide (Cr(VI)/H2O2) redox system was developed and its movement was analyzed. The motion of the micromotor was tracked via nanoparticle tracking analysis (NTA) and the corresponding diffusion coefficients (D) were determined. The NTA results revealed that D = 0 in water in the absence of additives (Cr(VI) or H2O2). The addition of H2O2 resulted in an increase in D from 0 to 12 × 106 nm2 s-1, which further increased to 20 × 106, 26.5 × 106, 29 × 106, and 44 × 106 nm2 s-1 with the addition of 0.5, 1, 2, and 5 ppm of Cr(VI), respectively. Cr(VI) alone did not efficiently propel the Fe/C3N4-based micromotor. Therefore, it was proposed that the Cr(VI)/H2O2 redox system generates O2, which plays a major role in the movement of the C3N4-based micromotor. In addition, the formation of reactive species, such as OH and 1O2, was confirmed through electron spin resonance experiments. The reactive species efficiently degraded sulfamethaxazole (SMX), an organic pollutant, as demonstrated through degradation studies and product analyses. The effects of various parameters, such as H2O2 concentration, Cr(VI) concentration, and initial pH on the movement of micromotor and degradation of SMX were also documented.

11.
Sci Total Environ ; 749: 141319, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32822914

RESUMO

A low saline backwater canal, mainly utilized for domestic and agricultural purposes, has been analyzed for the possible presence of organic micropollutants (OMP) and their potential removal was explored by multilayered microfiltration membranes. The qualitative as well as quantitative analysis were carried out for a span of one year using the technique of liquid chromatography connected with high resolution mass spectrometry (LC-Q-TOF-MS). The identification of the formally unknown compounds was initially done using non-target analysis based on the mass accuracy, isotopic pattern and MS/MS spectral interpretation. Results of the non target screening revealed the presence of 11 OMPs. Five of these OMPs were confirmed using standards; these include chlorophene (CHP), oxybenzone (OXY), N, N-diethyl-meta-toluamide (DEET), N, N-diethyl-benzamide (DEB) and dibutyl phthalate (DBP). Among the confirmed OMPs, the highest concentration was observed for DBP (244.61 ng l-1). The most frequently observed OMP in the study area was DBP while the least was DEB which is an insect repellent as well as a degradation product of DEET. The ecological risk associated with the target compounds has also been analyzed by calculating the risk quotient (RQ) and the results revealed that at the detected levels, these compounds are capable of causing low to medium risk. Low pressure (<0.3 bar) filtrations of the compounds were attempted using microfiltration (MF) and, poly(ethyleneimine)/poly(styrene sulfonate) (PEI/PSS) multi-layered MF membrane for spiked ultrapure water and also for natural water from the back-water canal. The batch mode illustrates nearly complete removal of CHP and OXY in spiked solutions and a good removal efficiency from natural water. The effect of coexisting ions and surfactants in feed is also illustrated. The high efficiency of the removal of both CHP and OXY, in such a complex medium highlights the potential application of the present method for the removal of similar OMPs in natural waters.

12.
J Phys Chem B ; 124(29): 6245-6256, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32600047

RESUMO

Mechanistic details of hydroxyl radical (•OH) mediated oxidations of 2-aminopurine (2AP) in the aqueous phase have been established in this study via a combination of DFT calculations (at the M05-2X/6-311+G(d,p) level with SMD solvation) and sonochemical end product analyses by the LC-Q-TOF-MS/MS method. Rate constants and branching ratios for single electron transfer (SET), two H-abstractions (HA), and seven radical adduct formation (RAF) reactions of •OH with 2AP were evaluated using transition state theory (TST). The RAF at the C8-position of 2AP is noted as the dominant process, which constitutes almost 46.1% of overall reaction routes. The SET mechanism accounts for the second major pathway (39.6%) followed by RAF at the C6-position (14.3%). Formations of 14 transformation products (TPs, i.e., the nonradical end products) in the sonochemical reactions of •OH with 2AP have been identified by means of the LC-Q-TOF-MS/MS technique. Among the 14 TPs (designated as TP1 to TP14), the lowest and highest mass to charge ratio (m/z) were respectively observed at 129 and 269 in ESI-MS positive ionization mode. The identities of all TPs have been proposed on the basis of elemental composition of [M + H]+ ions and their respective MS-MS fragmentation pattern. Four TPs (including guanine) are considered as obtained directly from primary transients by radical elimination, radical-radical combination/disproportionation reactions. The remaining 10 TPs are postulated as a result of successive self- and/or cross-reactions of primary transients/four first generation TPs with reagents such as •OH, O2, and solvent H2O molecules.

13.
Chemosphere ; 257: 127117, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32480085

RESUMO

We report the potential of a sulfidized nanoscale zerovalent iron-persulfate (S-nZVI-PS) system for in situ chemical oxidation (ISCO) of groundwater pollutants. The study was conducted using a sand-filled rectangular box with a permeable reactive barrier of S-nZVI as a facsimile of the ISCO system. Synthetic water contaminated with a target pollutant (reactive black-5, RB-5) was continuously passed through the box. The injection of PS led to the complete removal of RB-5 and the system remained reactive for approximately 12 days. This system has a benefit that the oxidation products of S-nZVI (i.e., Fe3O4, Fe2O3, and FeSO4) can further activate PS to retain its reactivity. In a separate trial, this method exploited oxidation, reduction, adsorption and co-precipitation mechanisms that conspired to remove two different groundwater pollutants- arsenite and 1,4-dioxane. These results confirmed the utility of S-nZVI-PS as a mediator of ISCO processes to degrade groundwater pollutants.


Assuntos
Água Subterrânea/análise , Poluentes Químicos da Água/análise , Adsorção , Dioxanos , Ferro , Oxirredução , Água
14.
Chemosphere ; 252: 126485, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32222516

RESUMO

Degradation of benzenesulfonic acid (BSA), the simplest aromatic sulfonic acid with extreme industrial importantance, by sonochemically generated hydroxyl radical (OH) have been thoroughly investigated. A reasonable reduction (∼50%) in the total organic carbon (TOC) was achieved only after prolonged irradiation (∼275 min, 350 kHz) of ultrasound, although a short irradiation of less than an hour is enough to degrade significant amount of BSA. The degradation efficiency of ultrasound has been reduced in lower and extremely higher frequencies, and upon increasing the pH. An irregular, but continuous, release of sulfate ions was also observed. Further, the release of protons upon the oxidation of BSA consistently reduces the experimental pH to nearly 2. High resolution mass spectrometric (HRMS) analyses reveals the formation of a number of aromatic intermediates, including three mono (Ia-c) and two di (IIa&b) hydroxylated BSA derivatives as the key products in the initial stages of the reaction. Pulse radiolysis studies revealed the generation of hydroxycyclohexadienyl-type radicals, characterized by absorption bands at 320 nm (k2 = (7.16 ± 0.04) × 109 M-1 s-1) and 380 nm, as the immediate intermediates of the reaction. The mechanism(s) leading to the degradation of BSA under sonolytic irradiation conditions along with the effect of various factors, such as the ultrasound frequency and reaction pH, have been explained in detail. The valuable mechanistic aspects obtained from our pulse radiolysis and HRMS studies are essential for the proper implementation of sonochemical techniques into real water purification process and, thus, receives extreme environmental relevance.


Assuntos
Benzenossulfonatos/química , Poluentes Químicos da Água/química , Radical Hidroxila/química , Íons/química , Cinética , Espectrometria de Massas , Oxirredução , Sonicação , Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
15.
Ultrason Sonochem ; 48: 482-491, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30080575

RESUMO

Triphenylmethane (TPM) dyes are an important category of dyes with a variety of industrial applications and consequently, these are found in the aquatic environment at relatively higher concentrations. Here, we report the degradation of two important TPM dyes (para rosaniline (PRA) and ethyl violet (EV)) in an aqueous medium by ultrasound which is one among the Advanced Oxidation Processes (AOPs). The main objective of this work is to study the effect of various inorganic ions on the degradation and the product formation of TPM dyes from the sonochemical reactions. Using a typical concentration of 10 ppm dyes and an ultrasonic frequency of 350 kHz and power of 60 W, a complete degradation of EV and PRA was observed with a pseudo first order rate constant of 0.2339 min-1 and 0.1956 min-1, respectively. The product analyses using high-resolution mass spectrometry (LC-Q-TOF-MS) revealed the formation of hydroxylated, de-alkylated, and other collapsed conjugated structure destructed products. The evolution of these products in the presence of various inorganic ions (Cl-, SO42-, NO3-, and CO3-) showed that only carbonate ions had a significant impact on the product evolution. The carbonate ions facilitated the formation of conjugated structure destructed product for both the dyes. This is attributed to the reactivity of carbonate radical, which facilitated the formation of carbon-centered radicals. This carbon-centered radical further undergoes reaction to cause the destruction of conjugated structures. This is confirmed by the identification of the corresponding product peaks in the mass spectra. The scavenging effect of carbonate ions was also reflected in the product study where there is a reduction in the formation of most of the hydroxylated products. One of the major inorganic species in any wastewater is carbonate ions and therefore the present result is very relevant to the understanding of oxidation based treatment protocol.

16.
Environ Sci Pollut Res Int ; 25(21): 20527-20539, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29116531

RESUMO

The present study describes the monitoring of some of the major classes of surfactants in water. The separation, identification, and the quantitative estimation of the compounds were achieved using LC-Q-ToF-MS. The analyses revealed the presence of variety of surfactants including linear alkylbenzene sulfonate (LAS), alcohol ethoxysulfates (AES), and alcohol ethoxylates (AE). Further, emphasis was given to AES as they are one of the most produced and consumed surfactants in the world. And as far as India is concerned, the present study is one of the most significant attempt regarding the identification and quantification of AES. The data obtained during the analysis revealed that the average concentration of AES C12Ex varied from 0.7 to 13.6 µg L-1 while that of C14Ex ranged between 1.3 and 10.4 µg L-1. The risk assessment revealed that higher chain AES are capable of posing medium level risk to the aquatic compartment. In addition, the study also included the physicochemical analysis of water from the selected area. Water was found to be acidic in nature and the salinity, TDS, and EC values were found to be high during the pre-monsoon season. The order of the levels of anionic constituents was of Cl->SO42-SO42->F->NO32- ≅ PO42- while that of cations were Na+ > Mg2+ > K+ > Ca2+. Results of correlation analysis showed that statistically negative correlation exists between AES homologs and pH while slight positive correlations were found between AES and other parameters including TDS and EC. The suitability of this water for domestic and agricultural purposes has been examined on the ground of basic quality indices such as the water quality index (WQI) and sodium adsorption ratio (SAR). The WQI measurements also revealed that the water quality of the region falls under the "very poor" category especially during the pre-monsoon season. The study could explore the cumulative share of these canals in the quality impairment of the receiving Vembanad Lake.


Assuntos
Monitoramento Ambiental/métodos , Lagos/química , Tensoativos/química , Poluentes Químicos da Água/química , Qualidade da Água , Agricultura , Índia , Salinidade , Abastecimento de Água
17.
Ultrason Sonochem ; 40(Pt A): 213-220, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946418

RESUMO

The sonochemical transformation of para-aminosalicylic acid (PAS), a widely used antibiotic and an identified Emerging Pollutant (EP) under the class of Pharmaceuticals and Personal Care Products (PPCPs), have been investigated in aqueous medium. Ultrasound having frequency of 350kHz and power of 80W was utilized for the degradation of PAS. A complete degradation (100%) of PAS after 60min and about 83% of COD removal after 120min of sonication, were obtained. Fourteen intermediate products were identified using LC-Q-TOF-MS. On a comparison with UV/H2O2 method, it is understood that four products out of fourteen were nitro derivatives which are formed only in the sonolysis, and the rest are from hydroxyl radicals. The involvement of nitrite which is formed from the sonolysis of solution containing PAS, in the formation of the other four nitro products has been established from the control studies. Nitrite ion partially scavenge hydroxyl radical in the course of the reaction to form nitrite radical which is the reactive species for the production of nitro compounds. It is, therefore, proposed that in addition to hydroxyl radical, contribution of in-situ generated nitrite also plays an important role in the sonochemical transformation of PAS.

18.
Environ Sci Pollut Res Int ; 24(7): 6261-6269, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27074927

RESUMO

Ultrasound is known to degrade organic compounds by pyrolysis and by the reaction of free radicals. In this work, sonolytic degradation of an identified water pollutant, coomassie brilliant blue (CBB), has been carried out in pure water as well as in river water. In the case of pure water, 90 % degradation was obtained after 30 min of sonication (350 kHz frequency, 60 W power), whereas in river water, the same efficiency was achieved only after 90 min. The degradation was also performed in the presence of varying concentration of (10-100 mg L-1) inorganic ions such as chloride, sulfate, nitrate, bicarbonate, and carbonate ions which were detected in the river water sample. Higher concentration of chloride enhanced the degradation due to the salting out mechanism. The enhancement of degradation in the presence of nitrate is mainly due to the change in the surface potential at the interface of the cavitating bubble. Bicarbonate ion and carbonate ion enhanced the degradation due to the involvement of carbonate radicals. A possible degradation mechanism is proposed based on the product profile determined by LC-Q-ToF-MS. The low efficiency of degradation in river water compared to that in pure water is likely due to the increased rate of bubble dissolution or escape of bubbles (degassing effect), and the scavenging of •OH by the organic content (high chemical oxygen demand (COD)).


Assuntos
Corantes de Rosanilina/química , Sonicação , Ondas Ultrassônicas , Poluentes Químicos da Água/química , Análise da Demanda Biológica de Oxigênio , Carbonatos/química , Cloretos/química , Nitratos/química , Oxirredução , Rios/química , Corantes de Rosanilina/isolamento & purificação , Sulfatos/química , Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
19.
J Hazard Mater ; 300: 202-209, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26184803

RESUMO

The study on the possible pathway of hydroxyl radicals mediated sonolytic degradation of paraben in water is reported. Methylparaben (MPB) which is the most utilized of paraben family is selected as a model emerging pollutant. The influence of common anions and some selected emerging contaminants that may coexist in typical water matrix on the degradation pattern is analyzed alongside. Among the anions, carbonate presents a negative influence which is attributed to the competition for OH radical. Some emerging contaminants also showed negative impact on degradation as was clear from HPLC data. The intermediates, analyzed by LC-Q-TOF-MS include hydroxylated and hydrolytic products. Three major steps (aromatic hydroxylation, hydroxylation at the ester chain and hydrolysis) are proposed to involve in the reaction of OH radical with MPB which ultimately leads to mineralization. The intensity of formation and decay of mono and dihydroxy products of MPB in the presence of additives have also been evaluated. COD analysis indicates a percentage reduction of 98% at 90 min of sonolysis and further increase in the degradation time resulted complete mineralization, which became evident from the mass spectrometric data. MTT assay revealed considerable decrease in the potential cytotoxicity.


Assuntos
Parabenos/química , Ondas Ultrassônicas , Poluentes Químicos da Água/química , Ácido Benzoico/química , Radical Hidroxila/química , Ácidos Ftálicos/química , Triclosan/química
20.
Chemosphere ; 119: 848-855, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25222624

RESUMO

Coomassie Brilliant Blue (CBB), discharged mainly from textile industries, is an identified water pollutant. Ultrasound initiated degradation of organic pollutants is one among the promising techniques and forms part of the Advanced Oxidation Processes (AOPs). Ultrasonic degradation of CBB under different experimental conditions has been investigated in the present work. The effect of frequency (200 kHz, 350 kHz, 620 kHz and 1 MHz) and power density (3.5 W mL(-1), 9.8 W mL(-1) and 19.6 W mL(-1)) on the degradation profile was evaluated. The optimum performance was obtained at 350 kHz and 19.6 W mL(-1). Similar to other sonolytic degradation of organic pollutants, maximum degradation of CBB was observed under acidic pH. The degradation profile indicated a pseudo-first order kinetics. The addition of ferrous ion (1×10(-4) M), hydrogen peroxide (1×10(-4) M), and peroxodisulphate (1×10(-4) M) had a positive effect on the degradation efficiency. The influence of certain important NOM like SDS and humic acid on the sonolytic degradation of CBB was also investigated. Both the compounds suppress the degradation efficiency. LC-Q-TOF-MS was used to identify the stable intermediate products. Nearly 13 transformed products were identified during 10min of sonication using the optimized operational parameters. This product profile demonstrated that most of the products are formed mainly by the OH radical attack. On the basis of these results, a degradation mechanism is proposed.


Assuntos
Corantes de Rosanilina/química , Sonicação/métodos , Ultrassom/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Recuperação e Remediação Ambiental , Substâncias Húmicas , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...