Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 4: 5944, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25089892

RESUMO

Influenza A viruses cause the respiratory illness influenza, which can be mild to fatal depending on the strain and host immune response. The flu polymerase acidic (PA), polymerase basic 1 (PB1), and polymerase basic 2 (PB2) proteins comprise the RNA-dependent RNA polymerase complex responsible for viral genome replication. The first crystal structures of the C-terminal domain of PA (PA-CTD) in the absence of PB1-derived peptides show a number of structural changes relative to the previously reported PB1-peptide bound structures. The human A/WSN/1933 (H1N1) and avian A/Anhui1/2013 (H7N9) strain PA-CTD proteins exhibit the same global topology as other strains in the absence of PB1, but differ extensively in the PB1 binding pocket including a widening of the binding groove and the unfolding of a ß-turn. Both PA-CTD proteins exhibited a significant increase in thermal stability in the presence of either a PB1-derived peptide or a previously reported inhibitor in differential scanning fluorimetry assays. These structural changes demonstrate plasticity in the PA-PB1 binding interface which may be exploited in the development of novel therapeutics.


Assuntos
Vírus da Influenza A Subtipo H1N1/química , Subtipo H7N9 do Vírus da Influenza A/química , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vírus da Influenza A Subtipo H1N1/enzimologia , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
2.
Antimicrob Agents Chemother ; 58(3): 1458-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24366729

RESUMO

Macrophage infectivity potentiators (Mips) are immunophilin proteins and essential virulence factors for a range of pathogenic organisms. We applied a structural biology approach to characterize a Mip from Burkholderia pseudomallei (BpML1), the causative agent of melioidosis. Crystal structure and nuclear magnetic resonance analyses of BpML1 in complex with known macrocyclics and other derivatives led to the identification of a key chemical scaffold. This scaffold possesses inhibitory potency for BpML1 without the immunosuppressive components of related macrocyclic agents. Biophysical characterization of a compound series with this scaffold allowed binding site specificity in solution and potency determinations for rank ordering the set. The best compounds in this series possessed a low-micromolar affinity for BpML1, bound at the site of enzymatic activity, and inhibited a panel of homologous Mip proteins from other pathogenic bacteria, without demonstrating toxicity in human macrophages. Importantly, the in vitro activity of BpML1 was reduced by these compounds, leading to decreased macrophage infectivity and intracellular growth of Burkholderia pseudomallei. These compounds offer the potential for activity against a new class of antimicrobial targets and present the utility of a structure-based approach for novel antimicrobial drug discovery.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Burkholderia pseudomallei/efeitos dos fármacos , Descoberta de Drogas/métodos , Imunofilinas/efeitos dos fármacos , Anti-Infecciosos/uso terapêutico , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Cristalografia por Raios X , Imunofilinas/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Fatores de Virulência
3.
J Vis Exp ; (76)2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23851357

RESUMO

Pandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year (1). Point mutations in the polymerase basic protein 2 subunit (PB2) have been linked to the adaptation of the viral infection in humans (2). Findings from such studies have revealed the biological significance of PB2 as a virulence factor, thus highlighting its potential as an antiviral drug target. The structural genomics program put forth by the National Institute of Allergy and Infectious Disease (NIAID) provides funding to Emerald Bio and three other Pacific Northwest institutions that together make up the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is dedicated to providing the scientific community with three-dimensional protein structures of NIAID category A-C pathogens. Making such structural information available to the scientific community serves to accelerate structure-based drug design. Structure-based drug design plays an important role in drug development. Pursuing multiple targets in parallel greatly increases the chance of success for new lead discovery by targeting a pathway or an entire protein family. Emerald Bio has developed a high-throughput, multi-target parallel processing pipeline (MTPP) for gene-to-structure determination to support the consortium. Here we describe the protocols used to determine the structure of the PB2 subunit from four different influenza A strains.


Assuntos
RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/química , Proteínas Virais/genética , Cristalografia por Raios X , Genômica/métodos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/química , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Subunidades Proteicas
4.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1015-21, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21904043

RESUMO

The Protein Maker is an automated purification system developed by Emerald BioSystems for high-throughput parallel purification of proteins and antibodies. This instrument allows multiple load, wash and elution buffers to be used in parallel along independent lines for up to 24 individual samples. To demonstrate its utility, its use in the purification of five recombinant PB2 C-terminal domains from various subtypes of the influenza A virus is described. Three of these constructs crystallized and one diffracted X-rays to sufficient resolution for structure determination and deposition in the Protein Data Bank. Methods for screening lysis buffers for a cytochrome P450 from a pathogenic fungus prior to upscaling expression and purification are also described. The Protein Maker has become a valuable asset within the Seattle Structural Genomics Center for Infectious Disease (SSGCID) and hence is a potentially valuable tool for a variety of high-throughput protein-purification applications.


Assuntos
Automação/instrumentação , Coccidioides/química , Esterol 14-Desmetilase/isolamento & purificação , Automação/métodos , Coccidioides/enzimologia , Esterol 14-Desmetilase/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-21904052

RESUMO

Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research.


Assuntos
Babesia bovis/enzimologia , Inibidores Enzimáticos/química , Complexos Multienzimáticos/química , Tetra-Hidrofolato Desidrogenase/química , Timidilato Sintase/química , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Ligantes , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Especificidade por Substrato , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/metabolismo
6.
Chem Biol ; 14(2): 121-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17317566

RESUMO

Flp provides a unique opportunity to apply the tools of chemical biology to phosphoryl transfer reactions. Flp and other tyrosine recombinases catalyze site-specific DNA rearrangements via a phosphotyrosine intermediate. Unlike most related enzymes, Flp's nucleophilic tyrosine derives from a different protomer than the remainder of its active site. Because the tyrosine can be supplied exogenously, nonnatural synthetic analogs can be used. Here we examine the catalytic role of Flp's conserved H305. DNA cleavage was studied using a peptide containing either tyrosine (pKa congruent with 10) or 3-fluoro-tyrosine (pKa congruent with 8.4). Religation was studied using DNA substrates with 3'-phospho-cresol (pKa congruent with 10) or 3'-para-nitro-phenol (pKa congruent with 7.1). In both cases, the tyrosine analog with the lower pKa specifically restored the activity of an H305 mutant. These results provide experimental evidence that this conserved histidine functions as a general acid/base catalyst in tyrosine recombinases.


Assuntos
Clivagem do DNA , DNA Nucleotidiltransferases/metabolismo , Reparo do DNA/fisiologia , Tirosina/metabolismo , Catálise , DNA Nucleotidiltransferases/genética , DNA Fúngico/genética , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Methods Enzymol ; 409: 511-24, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16793421

RESUMO

Tyrosyl-DNA phosphodiesterase (Tdp1) hydrolyzes 3'-phosphotyrosyl bonds in vitro. Because topoisomerase I, a type IB topoisomerase, is the only enzyme known to form 3'-phosphotyrosine bonds in eukaryotic cells, it was proposed that Tdp1 is involved in the repair of dead-end topoisomerase I-DNA covalent complexes that may form in vivo. It has also been proposed that Tdp1 may represent a novel anticancer target since known anticancer agents (e.g., camptothecin) act by stabilizing topoisomerase I-DNA covalent adducts. The importance of Tdp1 in DNA repair is also demonstrated by the observation that a recessive mutation in the human TDP1 gene is responsible for the hereditary disorder Spinocerebellar Ataxia with Axonal Neuropathy (SCAN). Although it has been proposed that Tdp1 may be involved in the repair of multiple DNA lesions, this chapter describes the synthesis and characterization of substrates used to study the role of Tdp1 in repairing topoisomerase I-DNA adducts, and the methods used to study the catalytic mechanism and structure of this novel enzyme.


Assuntos
Diester Fosfórico Hidrolases/metabolismo , Catálise , Dano ao DNA , Reparo do DNA , Humanos , Cinética
8.
J Biol Chem ; 280(23): 22029-35, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15811850

RESUMO

Tyrosyl-DNA phosphodiesterase I (Tdp1) hydrolyzes 3'-phosphotyrosyl bonds to generate 3'-phosphate DNA and tyrosine in vitro. Tdp1 is involved in the repair of DNA lesions created by topoisomerase I, although the in vivo substrate is not known. Here we study the kinetic and binding properties of human Tdp1 (hTdp1) to identify appropriate 3'-phosphotyrosyl DNA substrates. Genetic studies argue that Tdp1 is involved in double and single strand break repair pathways; however, x-ray crystal structures suggest that Tdp1 can only bind single strand DNA. Separate kinetic and binding experiments show that hTdp1 has a preference for single-stranded and blunt-ended duplex substrates over nicked and tailed duplex substrate conformations. Based on these results, we present a new model to explain Tdp1/DNA binding properties. These results suggest that Tdp1 only acts upon double strand breaks in vivo, and the roles of Tdp1 in yeast and mammalian cells are discussed.


Assuntos
Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/fisiologia , Cristalografia por Raios X , DNA/química , Dano ao DNA , Reparo do DNA , DNA de Cadeia Simples/química , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Ligação Proteica , Espectrometria de Fluorescência , Especificidade por Substrato , Fatores de Tempo
9.
Nucleic Acids Res ; 32(15): 4657-64, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15333697

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that acts upon protein-DNA covalent complexes. Tdp1 hydrolyzes 3'-phosphotyrosyl bonds to generate 3'-phosphate DNA and free tyrosine in vitro. Mutations in Tdp1 have been linked to patients with spinocerebellar ataxia, and over-expression of Tdp1 results in resistance to known anti-cancer compounds. Tdp1 has been shown to be involved in double-strand break repair in yeast, and Tdp1 has also been implicated in single-strand break repair in mammalian cells. Despite the biological importance of this enzyme and the possibility that Tdp1 may be a molecular target for new anti-cancer drugs, there are very few assays available for screening inhibitor libraries or for characterizing Tdp1 function, especially under pre-steady-state conditions. Here, we report the design and synthesis of a fluorescence-based assay using oligonucleotide and nucleotide substrates containing 3'-(4-methylumbelliferone)-phosphate. These substrates are efficiently cleaved by Tdp1, generating the fluorescent 4-methylumbelliferone reporter molecule. The kinetic characteristics determined for Tdp1 using this assay are in agreement with the previously published values, and this fluorescence-based assay is validated using the standard gel-based methods. This sensitive assay is ideal for kinetic analysis of Tdp1 function and for high-throughput screening of Tdp1 inhibitory molecules.


Assuntos
Corantes Fluorescentes/química , Himecromona/química , Diester Fosfórico Hidrolases/metabolismo , Humanos , Himecromona/análogos & derivados , Cinética , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Espectrometria de Fluorescência
10.
J Mol Biol ; 338(5): 895-906, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15111055

RESUMO

Tyrosyl-DNA phosphodiesterase I (Tdp1) is involved in the repair of DNA lesions created by topoisomerase I in vivo. Tdp1 is a member of the phospholipase D (PLD) superfamily of enzymes and hydrolyzes 3'-phosphotyrosyl bonds to generate 3'-phosphate DNA and free tyrosine in vitro. Here, we use synthetic 3'-(4-nitro)phenyl, 3'-(4-methyl)phenyl, and 3'-tyrosine phosphate oligonucleotides to study human Tdp1. Kinetic analysis of human Tdp1 (hTdp1) shows that the enzyme has nanomolar affinity for all three substrates and the overall in vitro reaction is diffusion-limited. Analysis of active-site mutants using these modified substrates demonstrates that hTdp1 uses an acid/base catalytic mechanism. The results show that histidine 493 serves as the general acid during the initial transesterification, in agreement with hypotheses based on previous crystal structure models. The results also argue that lysine 495 and asparagine 516 participate in the general acid reaction, and the analysis of crystal structures suggests that these residues may function in a proton relay. Together with previous crystal structure data, the new functional data provide a mechanistic understanding of the conserved histidine, lysine and asparagine residues found among all PLD family members.


Assuntos
Domínio Catalítico , Diester Fosfórico Hidrolases/metabolismo , Sítios de Ligação , DNA Topoisomerases Tipo I/metabolismo , Humanos , Cinética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...