Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 61(2): 255-273, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33586172

RESUMO

Global demands for energy-efficient heating and cooling systems coupled with rising commitments toward net zero emissions is resulting in wide deployment of shallow geothermal systems, typically installed to a depth of 100 to 200 m, and in the continued growth of the global ground source heat pump (GSHP) market. Ground coupled heat pump (GCHP) systems take up to 85% of the global GSHP market. With increasing deployment of GCHP systems in urban areas coping with limited regulations, there is growing potential and risk for these systems to impact the subsurface thermal regime and to interact with each other or with nearby heat-sensitive subsurface infrastructure. In this paper, we present three numerical modeling case studies, from the UK and Canada, which examine GCHP systems' response to perturbation of the wider hydrogeological and thermal regimes. The studies demonstrate how GCHP systems can be impacted by external influences and perturbations arising from subsurface activities that change the thermal and hydraulic regimes in the area surrounding these systems. Additional subsurface heat loads near existing schemes are found to have varied impacts on system efficiency with reduction ranging from <1% to 8%, while changes in groundwater flow rates (due to a nearby groundwater abstraction) reduced the effective thermal conductivity at the study site by 13%. The findings support the argument in favor of regulation of GCHP systems or, to a minimum, their registration with records of locations and approximate heat pump capacity-even though these systems do not abstract/inject groundwater.


Assuntos
Água Subterrânea , Água Subterrânea/química , Monitoramento Ambiental/métodos , Temperatura Alta
2.
Ground Water ; 61(2): 163-170, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33774814

RESUMO

Hydrogeologists and mechanical engineers approach the design of geoexchange systems, and the associated borehole heat exchanger (BHE) fields, in different ways, each focusing on their knowledge areas. While these differences have created a strong research base, with well-published innovations and designs that collectively allow for sustainable systems, industry has not embraced these recent advancements. Despite abundant research demonstrating how complex shallow groundwater flow and temperature conditions can influence BHE design and operation, the low-temperature geothermal industry remains largely fixed on simple analytical codes and assumed uniform ground conditions. Geoexchange system inefficiencies become masked via reduced heat pump performance and increased electricity consumption. Similarly, interactions between BHE fields and infrastructure in urban areas are slow to manifest and are often unrealized due to a lack of field temperature data. While regulations that include hydrogeological factors have been developed in some jurisdictions, they are largely voluntary or rudimentary and can be unapplied in industry. Addressing this application gap may be unreasonable as designing and installing thermally efficient geoexchange systems can put them out of the cost envelope of competing heating and cooling systems. Perhaps for hydrogeologists, the way forward lies in the use of BHE's to facilitate contaminated sites remediation, an area we are familiar with, and one that allows for innovative technologies to reduce cost envelopes. Following that path, hydrogeologists can help improve system efficiencies while fully considering the dynamic nature of advective and thermal transport by groundwater.


Assuntos
Água Subterrânea , Temperatura Alta , Água Subterrânea/química , Temperatura , Eletricidade
3.
Ground Water ; 49(6): 932-45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21306358

RESUMO

The design of ground-coupled heat pump systems requires knowledge of the thermal properties of the subsurface and boreholes. These properties can be measured with in situ thermal response tests (TRT), where a heat transfer fluid flowing in a ground heat exchanger is heated with an electric element and the resulting temperature perturbation is monitored. These tests are analogous to standard pumping tests conducted in hydrogeology, because a system that is initially assumed at equilibrium is perturbed and the response is monitored in time, to assess the system's properties with inverse modeling. Although pumping test analysis is a mature topic in hydrogeology, the current analysis of temperature measurements in the context of TRTs is comparatively a new topic and it could benefit from the application of concepts related to pumping tests. The purpose of this work is to review the methodology of TRTs and improve their analysis using pumping test concepts, such as the well function, the superposition principle, and the radius of influence. The improvements are demonstrated with three TRTs. The first test was conducted in unsaturated waste rock at an active mine and the other two tests aimed at evaluating the performance of thermally enhanced pipe installed in a fully saturated sedimentary rock formation. The concepts borrowed from pumping tests allowed the planning of the duration of the TRTs and the analysis of variable heat injection rate tests accounting for external heat transfer and temperature recovery, which reduces the uncertainty in the estimation of thermal properties.


Assuntos
Modelos Teóricos , Água Subterrânea/análise , Temperatura , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...