Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1012007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386661

RESUMO

Smallpox was the most rampant infectious disease killer of the 20th century, yet much remains unknown about the pathogenesis of the variola virus. Using archived tissue from a study conducted at the Centers for Disease Control and Prevention we characterized pathology in 18 cynomolgus macaques intravenously infected with the Harper strain of variola virus. Six macaques were placebo-treated controls, six were tecovirimat-treated beginning at 2 days post-infection, and six were tecovirimat-treated beginning at 4 days post-infection. All macaques were treated daily until day 17. Archived tissues were interrogated using immunohistochemistry, in situ hybridization, immunofluorescence, and electron microscopy. Gross lesions in three placebo-treated animals that succumbed to infection primarily consisted of cutaneous vesicles, pustules, or crusts with lymphadenopathy. The only gross lesions noted at the conclusion of the study in the three surviving placebo-treated and the Day 4 treated animals consisted of resolving cutaneous pox lesions. No gross lesions attributable to poxviral infection were present in the Day 2 treated macaques. Histologic lesions in three placebo-treated macaques that succumbed to infection consisted of proliferative and necrotizing dermatitis with intracytoplasmic inclusion bodies and lymphoid depletion. The only notable histologic lesion in the Day 4 treated macaques was resolving dermatitis; no notable lesions were seen in the Day 2 treated macaques. Variola virus was detected in all three placebo-treated animals that succumbed to infection prior to the study's conclusion by all utilized methods (IHC, ISH, IFA, EM). None of the three placebo-treated animals that survived to the end of the study nor the animals in the two tecovirimat treatment groups showed evidence of variola virus by these methods. Our findings further characterize variola lesions in the macaque model and describe new molecular methods for variola detection.


Assuntos
Dermatite , Varíola , Vírus da Varíola , Animais , Benzamidas , Isoindóis , Macaca fascicularis , Varíola/tratamento farmacológico , Varíola/patologia , Estados Unidos
2.
Viruses ; 15(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140576

RESUMO

Marburg virus (MARV) causes severe disease and high mortality in humans. The objective of this study was to characterize disease manifestations and pathogenesis in cynomolgus macaques exposed to MARV. The results of this natural history study may be used to identify features of MARV disease useful in defining the ideal treatment initiation time for subsequent evaluations of investigational therapeutics using this model. Twelve cynomolgus macaques were exposed to a target dose of 1000 plaque-forming units MARV by the intramuscular route, and six control animals were mock-exposed. The primary endpoint of this study was survival to Day 28 post-inoculation (PI). Anesthesia events were minimized with the use of central venous catheters for periodic blood collection, and temperature and activity were continuously monitored by telemetry. All mock-exposed animals remained healthy for the duration of the study. All 12 MARV-exposed animals (100%) became infected, developed illness, and succumbed on Days 8-10 PI. On Day 4 PI, 11 of the 12 MARV-exposed animals had statistically significant temperature elevations over baseline. Clinically observable signs of MARV disease first appeared on Day 5 PI, when 6 of the 12 animals exhibited reduced responsiveness. Ultimately, systemic inflammation, coagulopathy, and direct cytopathic effects of MARV all contributed to multiorgan dysfunction, organ failure, and death or euthanasia of all MARV-exposed animals. Manifestations of MARV disease, including fever, systemic viremia, lymphocytolysis, coagulopathy, and hepatocellular damage, could be used as triggers for initiation of treatment in future therapeutic efficacy studies.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Humanos , Animais , Macaca fascicularis , Viremia , Fígado
3.
Nat Microbiol ; 7(12): 1980-1986, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36253513

RESUMO

Close contact through sexual activity has been associated with the spread of monkeypox virus (MPXV) in the ongoing, global 2022 epidemic. However, it remains unclear whether MPXV replicates in the testes or is transmitted via semen to produce an active infection. We carried out a retrospective analysis of MPXV-infected crab-eating macaque archival tissue samples from acute and convalescent phases of infection of clade I or clade II MPXV using immunostaining and RNA in situ hybridization. We detected MPXV in interstitial cells and seminiferous tubules of testes as well as epididymal lumina, which are the sites of sperm production and maturation. We also detected inflammation and necrosis during the acute phase of the disease by histological analysis. Finally, we found that MPXV was cleared from most organs during convalescence, including healed skin lesions, but could be detected for up to 37 d post-exposure in the testes of convalescent macaques. Our findings highlight the potential for sexual transmission of MPXV in humans.


Assuntos
Monkeypox virus , Mpox , Humanos , Animais , Masculino , Mpox/epidemiologia , Testículo/patologia , Estudos Retrospectivos , Modelos Animais de Doenças , Sêmen , Macaca fascicularis , Sobreviventes
4.
Viruses ; 14(8)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36016363

RESUMO

For over two decades, researchers have sought to improve smallpox vaccines and also develop therapies to ensure protection against smallpox or smallpox-like disease. The 2022 human monkeypox pandemic is a reminder that these efforts should persist. Advancing such therapies have involved animal models primarily using surrogate viruses such as monkeypox virus. The intravenous monkeypox model in macaques produces a disease that is clinically similar to the lesional phase of fulminant human monkeypox or smallpox. Two criticisms of the model have been the unnatural route of virus administration and the high dose required to induce severe disease. Here, we purified monkeypox virus with the goal of lowering the challenge dose by removing cellular and viral contaminants within the inoculum. We found that there are advantages to using unpurified material for intravenous exposures.


Assuntos
Mpox , Vacina Antivariólica , Varíola , Vírus da Varíola , Animais , Modelos Animais de Doenças , Humanos , Macaca fascicularis , Mpox/prevenção & controle , Monkeypox virus
5.
Vaccines (Basel) ; 10(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35632473

RESUMO

The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants. Here, we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprising stabilized, pre-fusion spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction in lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.

6.
Sci Transl Med ; 14(631): eabi5229, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138912

RESUMO

Effective therapeutics have been developed against acute Ebola virus disease (EVD) in both humans and experimentally infected nonhuman primates. However, the risk of viral persistence and associated disease recrudescence in survivors receiving these therapeutics remains unclear. In contrast to rhesus macaques that survived Ebola virus (EBOV) exposure in the absence of treatment, we discovered that EBOV, despite being cleared from all other organs, persisted in the brain ventricular system of rhesus macaque survivors that had received monoclonal antibody (mAb) treatment. In mAb-treated macaque survivors, EBOV persisted in macrophages infiltrating the brain ventricular system, including the choroid plexuses. This macrophage infiltration was accompanied by severe tissue damage, including ventriculitis, choroid plexitis, and meningoencephalitis. Specifically, choroid plexus endothelium-derived EBOV infection led to viral persistence in the macaque brain ventricular system. This resulted in apoptosis of ependymal cells, which constitute the blood-cerebrospinal fluid barrier of the choroid plexuses. Fatal brain-confined recrudescence of EBOV infection manifested as severe inflammation, local pathology, and widespread infection of the ventricular system and adjacent neuropil in some of the mAb-treated macaque survivors. This study highlights organ-specific EBOV persistence and fatal recrudescent disease in rhesus macaque survivors after therapeutic treatment and has implications for the long-term follow-up of human survivors of EVD.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Anticorpos Monoclonais , Encéfalo , Humanos , Macaca mulatta , Recidiva , Sobreviventes
7.
PLoS One ; 16(2): e0246366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529233

RESUMO

Airborne transmission is predicted to be a prevalent route of human exposure with SARS-CoV-2. Aside from African green monkeys, nonhuman primate models that replicate airborne transmission of SARS-CoV-2 have not been investigated. A comparative evaluation of COVID-19 in African green monkeys, rhesus macaques, and cynomolgus macaques following airborne exposure to SARS-CoV-2 was performed to determine critical disease parameters associated with disease progression, and establish correlations between primate and human COVID-19. Respiratory abnormalities and viral shedding were noted for all animals, indicating successful infection. Cynomolgus macaques developed fever, and thrombocytopenia was measured for African green monkeys and rhesus macaques. Type II pneumocyte hyperplasia and alveolar fibrosis were more frequently observed in lung tissue from cynomolgus macaques and African green monkeys. The data indicate that, in addition to African green monkeys, macaques can be successfully infected by airborne SARS-CoV-2, providing viable macaque natural transmission models for medical countermeasure evaluation.


Assuntos
COVID-19/fisiopatologia , Modelos Animais de Doenças , Macaca mulatta , SARS-CoV-2/fisiologia , Animais , COVID-19/patologia , COVID-19/transmissão , Chlorocebus aethiops , Transmissão de Doença Infecciosa , Feminino , Pulmão/patologia , Macaca fascicularis , Masculino , Eliminação de Partículas Virais
8.
PLoS Negl Trop Dis ; 15(2): e0009125, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571211

RESUMO

Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a major cause of sepsis and mortality in endemic regions of Southeast Asia and Northern Australia. B. pseudomallei is a potential bioterrorism agent due to its high infectivity, especially via inhalation, and its inherent resistance to antimicrobials. There is currently no vaccine for melioidosis and antibiotic treatment can fail due to innate drug resistance, delayed diagnosis and treatment, or insufficient duration of treatment. A well-characterized animal model that mimics human melioidosis is needed for the development of new medical countermeasures. This study first characterized the disease progression of melioidosis in the African green monkey (AGM) and rhesus macaque (RM) for non-human primate model down-selection. All AGMs developed acute lethal disease similar to that described in human acute infection following exposure to aerosolized B. pseudomallei strain HBPUB10134a. Only 20% of RMs succumbed to acute disease. Disease progression, immune response and pathology of two other strains of B. pseudomallei, K96243 and MSHR5855, were also compared using AGMs. These three B. pseudomallei strains represent a highly virulent strain from Thailand (HBPUB101034a), a highly virulent strains from Australia (MSHR5855), and a commonly used laboratory strains originating from Thailand (K96243). Animals were observed for clinical signs of infection and blood samples were analyzed for cytokine responses, blood chemistry and leukocyte changes in order to characterize bacterial infection. AGMs experienced fever after exposure to aerosolized B. pseudomallei at the onset of acute disease. Inflammation, abscesses and/or pyogranulomas were observed in lung with all three strains of B. pseudomallei. Inflammation, abscesses and/or pyogranulomas were observed in lymph nodes, spleen, liver and/or kidney with B. pseudomallei, HBPUB10134a and K96243. Additionally, the Australian strain MSHR5855 induced brain lesions in one AGM similar to clinical cases of melioidosis seen in Australia. Elevated serum levels of IL-1ß, IL-1 receptor antagonist, IL-6, MCP-1, G-CSF, HGF, IFNγ, MIG, I-TAC, and MIP-1ß at terminal end points can be significantly correlated with non-survivors with B. pseudomallei infection in AGM. The AGM model represents an acute model of B. pseudomallei infection for all three strains from two geographical locations and will be useful for efficacy testing of vaccines and therapeutics against melioidosis. In summary, a dysregulated immune response leading to excessive persistent inflammation and inflammatory cell death is the key driver of acute melioidosis. Early intervention in these pathways will be necessary to counter B. pseudomallei and mitigate the pathological consequences of melioidosis.


Assuntos
Aerossóis , Burkholderia pseudomallei , Melioidose/microbiologia , Melioidose/patologia , Animais , Sudeste Asiático , Austrália , Bacteriemia , Medula Óssea/patologia , Quimiocinas/metabolismo , Chlorocebus aethiops , Citocinas , Modelos Animais de Doenças , Progressão da Doença , Humanos , Fígado/patologia , Pulmão/patologia , Macaca mulatta , Baço/patologia , Telemetria , Tailândia , Virulência
9.
Viruses ; 12(1)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941095

RESUMO

Recent Ebola virus (EBOV) outbreaks in West Africa and the Democratic Republic of the Congo have highlighted the urgent need for approval of medical countermeasures for treatment and prevention of EBOV disease (EVD). Until recently, when successes were achieved in characterizing the efficacy of multiple experimental EVD therapeutics in humans, the only feasible way to obtain data regarding potential clinical benefits of candidate therapeutics was by conducting well-controlled animal studies. Nonclinical studies are likely to continue to be important tools for screening and development of new candidates with improved pharmacological properties. Here, we describe a natural history study to characterize the time course and order of progression of the disease manifestations of EVD in rhesus monkeys. In 12 rhesus monkeys exposed by the intramuscular route to 1000 plaque-forming units of EBOV, multiple endpoints were monitored for 28 days following exposure. The disease progressed rapidly with mortality events occurring 7-10 days after exposure. Key disease manifestations observed consistently across the infected animals included, but were not limited to, viremia, fever, systemic inflammation, coagulopathy, lymphocytolysis, renal tubular necrosis with mineralization, and hepatocellular degeneration and necrosis.


Assuntos
Modelos Animais de Doenças , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/fisiopatologia , Macaca mulatta/virologia , Animais , Progressão da Doença , Feminino , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/mortalidade , Injeções Intramusculares , Masculino
10.
PLoS One ; 12(3): e0174106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28328947

RESUMO

Francisella tularensis, a gram-negative facultative intracellular bacterial pathogen, is the causative agent of tularemia and able to infect many mammalian species, including humans. Because of its ability to cause a lethal infection, low infectious dose, and aerosolizable nature, F. tularensis subspecies tularensis is considered a potential biowarfare agent. Due to its in vitro efficacy, ciprofloxacin is one of the antibiotics recommended for post-exposure prophylaxis of tularemia. In order to identify therapeutics that will be efficacious against infections caused by drug resistant select-agents and to better understand the threat, we sought to characterize an existing ciprofloxacin resistant (CipR) mutant in the Schu S4 strain of F. tularensis by determining its phenotypic characteristics and sequencing the chromosome to identify additional genetic alterations that may have occurred during the selection process. In addition to the previously described genetic alterations, the sequence of the CipR mutant strain revealed several additional mutations. Of particular interest was a frameshift mutation within kdsD which encodes for an enzyme necessary for the production of 3-Deoxy-D-manno-Octulosonic Acid (KDO), an integral component of the lipopolysaccharide (LPS). A kdsD mutant was constructed in the Schu S4 strain. Although it was not resistant to ciprofloxacin, the kdsD mutant shared many phenotypic characteristics with the CipR mutant, including growth defects under different conditions, sensitivity to hydrophobic agents, altered LPS profiles, and attenuation in multiple models of murine tularemia. This study demonstrates that the KdsD enzyme is essential for Francisella virulence and may be an attractive therapeutic target for developing novel medical countermeasures.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Francisella tularensis/genética , Mutação/genética , Açúcares Ácidos/metabolismo , Tularemia/microbiologia , Animais , Ciprofloxacina/farmacologia , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Profilaxia Pós-Exposição/métodos , Virulência/genética
11.
PLoS One ; 10(9): e0138843, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413900

RESUMO

Marburg virus infection in humans causes a hemorrhagic disease with a high case fatality rate. Countermeasure development requires the use of well-characterized animal models that mimic human disease. To further characterize the cynomolgus macaque model of MARV/Angola, two independent dose response studies were performed using the intramuscular or aerosol routes of exposure. All animals succumbed at the lowest target dose; therefore, a dose effect could not be determined. For intramuscular-exposed animals, 100 PFU was the first target dose that was not significantly different than higher target doses in terms of time to disposition, clinical pathology, and histopathology. Although a significant difference was not observed between aerosol-exposed animals in the 10 PFU and 100 PFU target dose groups, 100 PFU was determined to be the lowest target dose that could be consistently obtained and accurately titrated in aerosol studies.


Assuntos
Aerossóis/administração & dosagem , Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Animais , Injeções Intramusculares , Estimativa de Kaplan-Meier , Macaca fascicularis , Doença do Vírus de Marburg/sangue , RNA Viral/sangue , Temperatura
12.
PLoS One ; 6(10): e24832, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21998632

RESUMO

Smallpox, caused by variola virus (VARV), is a devastating human disease that affected millions worldwide until the virus was eradicated in the 1970 s. Subsequent cessation of vaccination has resulted in an immunologically naive human population that would be at risk should VARV be used as an agent of bioterrorism. The development of antivirals and improved vaccines to counter this threat would be facilitated by the development of animal models using authentic VARV. Towards this end, cynomolgus macaques were identified as adequate hosts for VARV, developing ordinary or hemorrhagic smallpox in a dose-dependent fashion. To further refine this model, we performed a serial sampling study on macaques exposed to doses of VARV strain Harper calibrated to induce ordinary or hemorrhagic disease. Several key differences were noted between these models. In the ordinary smallpox model, lymphoid and myeloid hyperplasias were consistently found whereas lymphocytolysis and hematopoietic necrosis developed in hemorrhagic smallpox. Viral antigen accumulation, as assessed immunohistochemically, was mild and transient in the ordinary smallpox model. In contrast, in the hemorrhagic model antigen distribution was widespread and included tissues and cells not involved in the ordinary model. Hemorrhagic smallpox developed only in the presence of secondary bacterial infections - an observation also commonly noted in historical reports of human smallpox. Together, our results support the macaque model as an excellent surrogate for human smallpox in terms of disease onset, acute disease course, and gross and histopathological lesions.


Assuntos
Progressão da Doença , Macaca fascicularis/virologia , Varíola/patologia , Vírus da Varíola/patogenicidade , Animais , Temperatura Corporal , Peso Corporal , Feminino , Testes Hematológicos , Cinética , Masculino , Varíola/sangue , Varíola/fisiopatologia , Varíola/transmissão , Viremia/patologia
13.
J Infect Dis ; 196(3): 441-50, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17597459

RESUMO

Cynomolgus macaques exposed to an aerosol containing a virulent strain of eastern equine encephalitis (EEE) virus developed neurological signs indicating encephalitis that corresponded with the onset of fever and an elevated heart rate. Viremia was either transient or undetectable even in animals that succumbed to the illness. The onset of illness was dose dependent, but once a febrile response was observed, macaques were moribund within 36 h. Simultaneously, a prominent leukocytosis was seen; 1 day before being moribund, macaques had a white blood cell count >20,000 cells/ microL. The leukocytes were predominantly granulocytes. Increases in serum levels of blood urea nitrogen, sodium, and alkaline phosphatase were also seen. The rapid onset and severity of neurological signs mirror what has been reported for human cases of disease caused by EEE.


Assuntos
Vírus da Encefalite Equina do Leste/fisiologia , Encefalomielite Equina do Leste/patologia , Encefalomielite Equina do Leste/virologia , Macaca fascicularis/virologia , Aerossóis , Animais , Modelos Animais de Doenças , Feminino , Febre/virologia , Masculino , Fatores de Tempo
14.
J Med Entomol ; 43(4): 647-62, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16892621

RESUMO

One of the most significant modern day efforts to prevent and control an arthropod-borne disease during a military deployment occurred when a team of U.S. military entomologists led efforts to characterize, prevent, and control leishmaniasis at Tallil Air Base (TAB), Iraq, during Operation Iraqi Freedom. Soon after arriving at TAB on 22 March 2003, military entomologists determined that 1) high numbers of sand flies were present at TAB, 2) individual soldiers were receiving many sand fly bites in a single night, and 3) Leishmania parasites were present in 1.5% of the female sand flies as determined using a real-time (fluorogenic) Leishmania-generic polymerase chain reaction assay. The rapid determination that leishmaniasis was a specific threat in this area allowed for the establishment of a comprehensive Leishmaniasis Control Program (LCP) over 5 mo before the first case of leishmaniasis was confirmed in a U.S. soldier deployed to Iraq. The LCP had four components: 1) risk assessment, 2) enhancement of use of personal protective measures by all personnel at TAB, 3) vector and reservoir control, and 4) education of military personnel about sand flies and leishmaniasis. The establishment of the LCP at TAB before the onset of any human disease conclusively demonstrated that entomologists can play a critical role during military deployments.


Assuntos
Mordeduras e Picadas de Insetos/prevenção & controle , Insetos Vetores/parasitologia , Leishmaniose/prevenção & controle , Militares , Phlebotomus/parasitologia , Animais , Culicidae , Cães , Meio Ambiente , Feminino , Habitação/normas , Humanos , Mordeduras e Picadas de Insetos/parasitologia , Controle de Insetos/instrumentação , Controle de Insetos/métodos , Iraque , Chacais , Leishmania/isolamento & purificação , Leishmania/patogenicidade , Leishmaniose/transmissão , Masculino , Militares/educação , Controle de Pragas/métodos , Praguicidas , Vigilância da População , Roedores , Estados Unidos
15.
Antiviral Res ; 55(1): 151-9, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12076759

RESUMO

3-deazaneplanocin A, an analog of adenosine, is a potent inhibitor of Ebola virus replication. A single dose early in infection prevents illness and death in Ebola virus-infected mice. The ability of this and similar compounds to block both RNA and DNA viruses has been attributed to the inhibition of a cellular enzyme, S-adenosylhomocysteine hydrolase (SAH), indirectly resulting in reduced methylation of the 5' cap of viral messenger RNA. However, we found that the protective effect of the drug resulted from massively increased production of interferon-alpha in Ebola-infected, but not uninfected mice. Peak interferon levels increased with the extent of disease at the time of treatment, indicating that production was boosted only in virus-infected cells. Ebola virus has been shown to suppress innate antiviral mechanisms of the type I interferon response. 3-deazaneplanocin A appears to reverse such suppression, restricting viral dissemination. Further development should focus on identifying adenosine analogues that produce a similar effect in Ebola virus-infected primates.


Assuntos
Adenosina/análogos & derivados , Adenosina/administração & dosagem , Ebolavirus , Doença pelo Vírus Ebola/imunologia , Interferon-alfa/biossíntese , Adenosina/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/tratamento farmacológico , Imuno-Histoquímica , Interferon-alfa/sangue , Fígado/patologia , Fígado/virologia , Camundongos , Camundongos Endogâmicos BALB C , Viremia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...