Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38869557

RESUMO

The preparation of 2H-phase MoS2 thin nanosheets by electrochemical delamination remains a challenge, despite numerous efforts in this direction. In this work, by choosing appropriate intercalating cations for cathodic delamination, the insertion process was facilitated, leading to a higher degree of exfoliation while maintaining the original 2H-phase of the starting bulk MoS2 material. Specifically, trimethylalkylammonium cations were tested as electrolytes, outperforming their bulkier tetraalkylammonium counterparts, which have been the focus of past studies. The performance of novel electrochemically derived 2H-phase MoS2 nanosheets as electrode material for electrochemical energy storage in lithium-ion batteries was investigated. The lower thickness and thus higher flexibility of cathodically exfoliated MoS2 promoted better electrochemical performance compared to liquid-phase and ultrasonically assisted exfoliated MoS2, both in terms of capacity (447 vs. 371 mA·h·g-1 at 0.2 A·g-1) and rate capability (30% vs. 8% capacity retained when the current density was increased from 0.2 A·g-1 to 5 A·g-1), as well as cycle life (44% vs. 17% capacity retention at 0.2 A·g-1 after 580 cycles). Overall, the present work provides a convenient route for obtaining MoS2 thin nanosheets for their advantageous use as anode material for lithium storage.

2.
Nat Commun ; 15(1): 1935, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431624

RESUMO

Understanding the local electrochemical processes is of key importance for efficient energy storage applications, including electrochemical double layer capacitors. In this work, we studied the charge storage mechanism of a model material - reduced graphene oxide (rGO) - in aqueous electrolyte using the combination of cavity micro-electrode, operando electrochemical quartz crystal microbalance (EQCM) and operando electrochemical dilatometry (ECD) tools. We evidence two regions with different charge storage mechanisms, depending on the cation-carbon interaction. Notably, under high cathodic polarization (region II), we report an important capacitance increase in Zn2+ containing electrolyte with minimum volume expansion, which is associated with Zn2+ desolvation resulting from strong electrostatic Zn2+-rGO interactions. These results highlight the significant role of ion-electrode interaction strength and cation desolvation in modulating the charging mechanisms, offering potential pathways for optimized capacitive energy storage. As a broader perspective, understanding confined electrochemical systems and the coupling between chemical, electrochemical and transport processes in confinement may open tremendous opportunities for energy, catalysis or water treatment applications in the future.

3.
Angew Chem Int Ed Engl ; 63(14): e202319238, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38324461

RESUMO

In this study, we used 2-Dimmensionnal Ti3C2 MXene as model materials to understand how the surface groups affect their electrochemical performance. By adjusting the nature of the surface terminations (Cl-, N/O-, and O-) of Ti3C2 MXene through a molten salt approach, we could change the spacing between MXene layers and the level of water confinement, resulting in significant modifications of the electrochemical performance in acidic electrolyte. Using a combination of techniques including in-operando X-ray diffraction and electrochemical quartz crystal microbalance (EQCM) techniques, we found that the presence of confined water results in a drastic transition from an almost electrochemically inactive behavior for Cl-terminated Ti3C2 to an ideally fast pseudocapacitive signature for N,O-terminated Ti3C2 MXene. This experimental work not only demonstrates the strong connection between surface terminations and confined water but also reveals the importance of confined water on the charge storage mechanism and the reaction kinetics in MXene.

4.
ACS Appl Energy Mater ; 6(13): 7180-7193, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37448979

RESUMO

Layered transition-metal dichalcogenides (LTMDs) in two-dimensional (2D) form are attractive for electrochemical energy storage, but research efforts in this realm have so far largely focused on the best-known members of such a family of materials, mainly MoS2, MoSe2, and WS2. To exploit the potential of further, currently less-studied 2D LTMDs, targeted methods for their production, preferably by cost-effective and sustainable means, as well as control over their nanomorphology, are highly desirable. Here, we report a quick and straightforward route for the preparation of 2D NbSe2 and other metallic 2D LTMDs that relies on delaminating their bulk parent solid under aqueous cathodic conditions. Unlike typical electrochemical exfoliation methods for 2D materials, which generally require an additional processing step (e.g., sonication) to complete delamination, the present electrolytic strategy yielded directly exfoliated nano-objects in a very short time (1-2 min) and with significant yields (∼16 wt %). Moreover, the dominant morphology of the exfoliated 2D NbSe2 products could be tuned between rolled-up nanosheets (nanorolls) and unfolded nanosheets, depending on the solvent where the nano-objects were dispersed (water or isopropanol). This rather unusual delamination behavior of NbSe2 was explored and concluded to occur via a redox mechanism that involves some degree of hydrolytic oxidation of the material triggered by the cathodic treatment. The delamination strategy could be extended to other metallic LTMDs, such as NbS2 and VSe2. When tested toward electrochemical lithium storage, electrodes based on the exfoliated NbSe2 products delivered very high capacity values, up to 750-800 mA h g-1 at 0.5 A g-1, where the positive effect of the nanoroll morphology, associated to increased accessibility of the lithium storage sites, was made apparent. Overall, these results are expected to expand the availability of fit-for-purpose 2D LTMDs by resorting to simple and expeditious production strategies of low environmental impact.

5.
ACS Appl Mater Interfaces ; 14(39): 44405-44418, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36150165

RESUMO

The development of superconcentrated or water-in-salt electrolytes (WISEs) has paved a new way toward realizing environmentally friendly, nonflammable batteries and supercapacitors based on aqueous electrolytes. The development of new electrolytes, such as WISEs, needs to be accompanied by further studies of the charging mechanism. This is essential to guide the choice of the electrode/electrolyte pairs for optimizing the performance of WISE-based supercapacitors. Therefore, to optimize the performance of carbon/carbon supercapacitors when using new, superconcentrated electrolytes, we present a detailed investigation of the carbon/electrolyte interface by combining electrochemical measurements with Raman and NMR spectroscopy and mass spectrometry. In particular, NMR provides crucial information about the local environment of electrolyte ions inside the carbon pores of the electrode. The results show that the structure of the electrolyte strongly depends on the concentration of the electrolyte and affects the mechanism of charge storage at the positive and negative electrodes.

7.
Nat Mater ; 19(8): 894-899, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32284597

RESUMO

Two-dimensional carbides and nitrides of transition metals, known as MXenes, are a fast-growing family of materials that have attracted attention as energy storage materials. MXenes are mainly prepared from Al-containing MAX phases (where A = Al) by Al dissolution in F-containing solution; most other MAX phases have not been explored. Here a redox-controlled A-site etching of MAX phases in Lewis acidic melts is proposed and validated by the synthesis of various MXenes from unconventional MAX-phase precursors with A elements Si, Zn and Ga. A negative electrode of Ti3C2 MXene material obtained through this molten salt synthesis method delivers a Li+ storage capacity of up to 738 C g-1 (205 mAh g-1) with high charge-discharge rate and a pseudocapacitive-like electrochemical signature in 1 M LiPF6 carbonate-based electrolyte. MXenes prepared via this molten salt synthesis route may prove suitable for use as high-rate negative-electrode materials for electrochemical energy storage applications.

8.
ACS Nano ; 13(11): 12810-12815, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31618018

RESUMO

Nuclear magnetic resonance is one of the rare techniques able to probe selectively the ions inside the nanoporous network in supercapacitor devices. With a magnetic resonance imaging method able to detect all ions (adsorbed and nonadsorbed), we record one-dimensional concentration profiles of the active ions in supercapacitors with an electrode configuration close to that used in industry. Larger anionic concentration changes are probed upon charge and discharge in a carbide-derived carbon (CDC) with micropores smaller than 1 nm compared to a conventional nanoporous carbon (CC) with a larger distribution of pore sizes, up to 2 nm. They highlight the increased interaction of the anions with CDC and provide a better understanding of the enhanced capacitance in CDC-based supercapacitors.

9.
ACS Appl Mater Interfaces ; 9(47): 41224-41232, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29090898

RESUMO

A more detailed understanding of the electrode/electrolyte interface degradation during the charging cycle in supercapacitors is of great interest for exploring the voltage stability range and therefore the extractable energy. The evaluation of the gas evolution during the charging, discharging, and aging processes is a powerful tool toward determining the stability and energy capacity of supercapacitors. Here, we attempt to fit the gas analysis resolution to the time response of a low-gas-generation power device by adopting a modified pulsed electrochemical mass spectrometry (PEMS) method. The pertinence of the method is shown using a symmetric carbon/carbon supercapacitor operating in different aqueous electrolytes. The differences observed in the gas levels and compositions as a function of the cell voltage correlate to the evolution of the physicochemical characteristics of the carbon electrodes and to the electrochemical performance, giving a complete picture of the processes taking place at the electrode/electrolyte interface.

10.
Dalton Trans ; 43(48): 18025-34, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25352309

RESUMO

The aim of this work was to investigate the synthesis of tin nanoparticles (NPs) or tin/carbon composites, in room temperature ionic liquids (RTILs), that could be used as structured anode materials for Li-ion batteries. An innovative route for the synthesis of Sn nanoparticles in such media is successfully developed. Compositions, structures, sizes and morphologies of NPs were characterized by high-energy X-ray diffraction (HEXRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). Our findings indicated that (i) metallic tetragonal ß-Sn was obtained and (ii) the particle size could be tailored by tuning the nature of the RTILs, leading to nano-sized spherical particles with a diameter ranging from 3 to 10 nm depending on synthesis conditions. In order to investigate carbon composite materials for Li-ion batteries, Sn nanoparticles were successfully deposited on the surface of multi-wall carbon nanotubes (MWCNT). Moreover, electrochemical properties have been studied in relation to a structural study of the nanocomposites. The poor electrochemical performances as a negative electrode in Li-ion batteries is due to a significant amount of RTIL trapped within the pores of the nanotubes as revealed by XPS investigations. This dramatically affected the gravimetric capacity of the composites and limited the diffusion of lithium. The findings of this work however offer valuable insights into the exciting possibilities for synthesis of novel nano-sized particles and/or alloys (e.g. Sn-Cu, Sn-Co, Sn-Ni, etc.) and the importance of carbon morphology in metal pulverization during the alloying/dealloying process as well as prevention of ionic liquid trapping.

11.
Nat Mater ; 12(4): 351-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23416727

RESUMO

Supercapacitors are electrochemical energy-storage devices that exploit the electrostatic interaction between high-surface-area nanoporous electrodes and electrolyte ions. Insight into the molecular mechanisms at work inside supercapacitor carbon electrodes is obtained with (13)C and (11)B ex situ magic-angle spinning nuclear magnetic resonance (MAS-NMR). In activated carbons soaked with an electrolyte solution, two distinct adsorption sites are detected by NMR, both undergoing chemical exchange with the free electrolyte molecules. On charging, anions are substituted by cations in the negative carbon electrode and cations by anions in the positive electrode, and their proportions in each electrode are quantified by NMR. Moreover, acetonitrile molecules are expelled from the adsorption sites at the negative electrode alone. Two nanoporous carbon materials were tested, with different nanotexture orders (using Raman and (13)C MAS-NMR spectroscopies), and the more disordered carbon shows a better capacitance and a better tolerance to high voltages.

12.
Solid State Nucl Magn Reson ; 42: 81-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22316606

RESUMO

We show that natural abundance, solid-state MAS-NMR (13)C INADEQUATE spectra can be recorded for crystallized C(70), using the through-bond J-coupling for the magnetization transfer. The effect of strong J-coupling can be lessened at high magnetic fields, allowing the observation of cross-peaks between close resonances. DFT calculations of the chemical shifts show an excellent agreement with the experimental values. A correlation is observed between the average CCC bond angles and the (13)C chemical shift, offering a way to understand the dispersion of (13)C chemical shifts in nanoporous activated carbons in terms of local deviations from planarity.


Assuntos
Carbono/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular
13.
ChemSusChem ; 4(7): 943-9, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21302364

RESUMO

The advantages provided by multiwalled carbon nanotubes (CNTs) as backbones for composite supercapacitor electrodes are discussed. This paper particularly highlights the electrochemical properties of carbon composites obtained by pyrolysis of seaweed/CNTs blends. Due to the nanotexturing effect of CNTs, supercapacitors fabricated with electrodes from these composites exhibit enhanced electrochemical performances compared with CNT-free carbons. The cell resistance is dramatically reduced by the excellent conductivity of CNTs and by the good propagation of ions favored by the presence of opened mesopores. As a consequence, the specific power of supercapacitors based on these nanocomposites is very high. Another advantage related to the presence of CNTs is a better life cycle of the systems. The composite electrodes are resilient during the charge/discharge of capacitors; these are able to perfectly accommodate the dimensional changes appearing in the active material without mechanical damages.


Assuntos
Capacitância Elétrica , Nanotubos de Carbono/química , Alga Marinha/química , Fenômenos Químicos , Eletroquímica , Nanocompostos/química , Água/química
14.
Chem Res Toxicol ; 21(9): 1690-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18636755

RESUMO

Carbon nanotubes (CNT) have been reported to elicit toxic responses in vitro and in vivo, ascribed so far to metal contamination, CNT length, degree of oxidation, or extent of hydrophilicity. To examine how structural properties may modulate the toxicity of CNT, one preparation of multiwall CNT has been modified (i) by grinding (introducing structural defects) and subsequently heating either in a vacuum at 600 degrees C (causing reduction of oxygenated carbon functionalities and reduction of metallic oxides) or in an inert atmosphere at 2400 degrees C (causing elimination of metals and annealing of defects) and (ii) by heating at 2400 degrees C in an inert atmosphere and subsequently grinding the thermally treated CNT (introducing defects in a metal-deprived carbon framework). The presence of framework and surface defects, metals, and oxygenated functionalities was monitored by means of a set of techniques, including micro-Raman spectroscopy, adsorption calorimetry, X-ray photoelectron spectroscopy, inductively coupled plasma mass spectrometry, and atomic emission spectroscopy. Contrary to traditional toxicants, such as asbestos, CNT may quench rather than generate oxygenated free radicals. The potential of the modified CNT to scavenge hydroxyl radicals was thus evaluated by means of electron spin resonance spectroscopy (spin trapping). The original ground material exhibited a scavenging activity toward hydroxyl radicals, which was eliminated by heating at 2400 degrees C but restored upon grinding. This scavenging activity, related to the presence of defects, appears to go paired with the genotoxic and inflammatory potential of CNT reported in the companion paper. Thus, defects may be one of the major factors governing the toxic potential of CNT.


Assuntos
Fenômenos Químicos , Pneumopatias/induzido quimicamente , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Doença Aguda , Adsorção , Sequestradores de Radicais Livres/química , Humanos , Radical Hidroxila/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Volatilização , Água/química
15.
Chem Res Toxicol ; 21(9): 1698-705, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18636756

RESUMO

Experimental studies indicate that carbon nanotubes (CNTs) have the potential to induce adverse pulmonary effects, including alveolitis, fibrosis, and genotoxicity in epithelial cells. Here, we explored the physicochemical determinants of these toxic responses with progressively and selectively modified CNTs: ground multiwall CNTs modified by heating at 600 degrees C (loss of oxygenated carbon functionalities and reduction of oxidized metals) or at 2400 degrees C (annealing of structural defects and elimination of metals) and by grinding the material that had been heated at 2400 degrees C before (introduction of structural defects in a metal-deprived framework). The CNTs were administered intratracheally (2 mg/rat) to Wistar rats to evaluate the short-term response (3 days) in bronchoalveolar lavage fluid (LDH, proteins, cellular infiltration, IL-1beta, and TNF-alpha). The long-term (60 days) lung response was assessed biochemically by measuring the lung hydroxyproline content and histologically. In vitro experiments were also performed on rat lung epithelial cells to assess the genotoxic potential of the modified CNTs with the cytokinesis block micronucleus assay. The results show that the acute pulmonary toxicity and the genotoxicity of CNT were reduced upon heating but restored upon grinding, indicating that the intrinsic toxicity of CNT is mainly mediated by the presence of defective sites in their carbon framework.


Assuntos
Pneumopatias/induzido quimicamente , Nanotubos de Carbono/toxicidade , Doença Aguda , Animais , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Injeções Espinhais , L-Lactato Desidrogenase/análise , Pneumopatias/patologia , Macrófagos/efeitos dos fármacos , Testes para Micronúcleos , Nanotubos de Carbono/química , Neutrófilos/efeitos dos fármacos , Proteínas/análise , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...