Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(7): 863, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336819

RESUMO

Potentially toxic metals (PTMs) contamination in the soil poses a serious danger to people's health by direct or indirect exposure, and generally it occurs by consuming food grown in these soils. The present study assessed the pollution levels and risk to human health upon sustained exposure to PTM concentrations in the area's centuries-old glass industry clusters of the city of Firozabad, Uttar Pradesh, India. Soil sampling (0-15 cm) was done in farmers' fields within a 1 km radius of six industrial clusters. Various environmental (geo-accumulation index, contamination factor, pollution load index, enrichment factor, and ecological risk index) and health risk indices (hazard quotient, carcinogenic risk) were computed to assess the extent of damage caused to the environment and the threat to human health. Results show that the mean concentrations of Cu (33 mg kg-1), Zn (82.5 mg kg-1), and Cr (15.3 mg kg-1) were at safe levels, whereas the levels of Pb, Ni, and Cd exceeded their respective threshold limits. A majority of samples (88%) showed considerable ecological risk due to the co-contamination of these six PTMs. Health risk assessment indicated tolerable cancer and non-cancer risk in both adults and children for all PTMs, except Ni, where adults were exposed to potential threat of cancer. Pearson's correlation study revealed a significant positive correlation between all six metal pairs and conducting principal component analysis (PCA) confirmed the common source of metal pollution. The PC score ranked different sites from highest to lowest according to PTM loads that help to establish the location of the source. Hierarchical cluster analysis grouped different sites into the same cluster based on similarity in PTMs load, i.e., low, medium, and high.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Solo , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Intoxicação por Metais Pesados , Índia , Medição de Risco , China
2.
Molecules ; 28(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903414

RESUMO

Groundwater arsenic (As) pollution is a naturally occurring phenomenon posing serious threats to human health. To mitigate this issue, we synthesized a novel bentonite-based engineered nano zero-valent iron (nZVI-Bento) material to remove As from contaminated soil and water. Sorption isotherm and kinetics models were employed to understand the mechanisms governing As removal. Experimental and model predicted values of adsorption capacity (qe or qt) were compared to evaluate the adequacy of the models, substantiated by error function analysis, and the best-fit model was selected based on corrected Akaike Information Criterion (AICc). The non-linear regression fitting of both adsorption isotherm and kinetic models revealed lower values of error and lower AICc values than the linear regression models. The pseudo-second-order (non-linear) fit was the best fit among kinetic models with the lowest AICc values, at 57.5 (nZVI-Bare) and 71.9 (nZVI-Bento), while the Freundlich equation was the best fit among the isotherm models, showing the lowest AICc values, at 105.5 (nZVI-Bare) and 105.1 (nZVI-Bento). The adsorption maxima (qmax) predicted by the non-linear Langmuir adsorption isotherm were 354.3 and 198.5 mg g-1 for nZVI-Bare and nZVI-Bento, respectively. The nZVI-Bento successfully reduced As in water (initial As concentration = 5 mg L-1; adsorbent dose = 0.5 g L-1) to below permissible limits for drinking water (10 µg L-1). The nZVI-Bento @ 1% (w/w) could stabilize As in soils by increasing the amorphous Fe bound fraction and significantly diminish the non-specific and specifically bound fraction of As in soil. Considering the enhanced stability of the novel nZVI-Bento (upto 60 days) as compared to the unmodified product, it is envisaged that the synthesized product could be effectively used for removing As from water to make it safe for human consumption.

3.
Int J Phytoremediation ; 25(1): 9-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35298319

RESUMO

Boron (B) is an essential micronutrient, crucial for the growth and development of crop plants. However, the essential to a toxic range of B in the plant is exceptionally narrow, and symptoms develop with a slight change in its concentration in soil. The morphological and anatomical response, such as leaf chlorosis, stunted growth, and impairment in the xylem and phloem development occurs under B-toxicity. The transport of B in the plant occurs via transpiration stream with the involvement of B-channels and transporter in the roots. The higher accumulation of B in source and sink tissue tends to have lower photosynthetic, chlorophyll content, infertility, failure of pollen tube formation and germination, impairment of cell wall formation, and disruption of membrane systems. Excess B in the plant hinders the uptake of other micronutrients, hormone transport, and metabolite partitioning. B-mediated reactive oxygen species production leads to the synthesis of antioxidant enzymes which help to scavenge these molecules and prevent the plant from further oxidative damage. This review highlights morpho-anatomical, physiological, biochemical, and molecular responses of the plant under B toxicity and thereby might help the researchers to understand the related mechanism and design strategies to develop B tolerant cultivars.


The physio-biochemical and molecular responses and mechanism of B uptake under its toxic condition have been illustrated. The spatial distribution of boron under its toxic condition and its accumulation in the plant might be regulated with sugar alcohols (polyols). This review throws light on the elevated level of B in the soil-plant system and provides management strategies for alleviating B toxicity in the plant.


Assuntos
Antioxidantes , Boro , Boro/toxicidade , Biodegradação Ambiental , Antioxidantes/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...