Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13603, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38866944

RESUMO

Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors. Endothelial Notch signaling rapidly upregulates UNC5B in multiple endothelial cell types. Loss or gain of UNC5B recapitulated specific Notch-regulated phenotypes. UNC5B expression inhibited endothelial migration and proliferation and was required for stabilization of endothelial junctions in response to shear stress. Loss of UNC5B partially or wholly blocked the ability of Notch activation to regulate these endothelial cell behaviors. In the developing mouse retina, endothelial-specific loss of UNC5B led to excessive vascularization, including increased vascular outgrowth, density, and branchpoint count. These data indicate that Notch signaling upregulates UNC5B as an effector protein to control specific endothelial cell behaviors and inhibit angiogenic growth.


Assuntos
Movimento Celular , Proliferação de Células , Células Endoteliais , Receptores de Netrina , Receptores Notch , Retina , Transdução de Sinais , Animais , Receptores de Netrina/metabolismo , Receptores Notch/metabolismo , Camundongos , Células Endoteliais/metabolismo , Retina/metabolismo , Humanos , Vasos Retinianos/metabolismo , Neovascularização Fisiológica
3.
Angiogenesis ; 24(4): 789-805, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33956260

RESUMO

Collagen type IV (Col IV) is a basement membrane protein associated with early blood vessel morphogenesis and is essential for blood vessel stability. Defects in vascular Col IV deposition are the basis of heritable disorders, such as small vessel disease, marked by cerebral hemorrhage and drastically shorten lifespan. To date, little is known about how endothelial cells regulate the intracellular transport and selective secretion of Col IV in response to angiogenic cues, leaving a void in our understanding of this critical process. Our aim was to identify trafficking pathways that regulate Col IV deposition during angiogenic blood vessel development. We have identified the GTPase Rab10 as a major regulator of Col IV vesicular trafficking during vascular development using both in vitro imaging and biochemistry as well as in vivo models. Knockdown of Rab10 reduced de novo Col IV secretion in vivo and in vitro. Mechanistically, we determined that Rab10 is an indirect mediator of Col IV secretion, partnering with atypical Rab25 to deliver the enzyme lysyl hydroxylase 3 (LH3) to Col IV-containing vesicles staged for secretion. Loss of Rab10 or Rab25 results in depletion of LH3 from Col IV-containing vesicles and rapid lysosomal degradation of Col IV. Furthermore, we demonstrate that Rab10 is Notch responsive, indicating a novel connection between permissive Notch-based vessel maturation programs and vesicle trafficking. Our results illustrate both a new trafficking-based component in the regulated secretion of Col IV and how this vesicle trafficking program interfaces with Notch signaling to fine-tune basement membrane secretion during blood vessel development.


Assuntos
Colágeno Tipo IV , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase , Membrana Basal , Colágeno Tipo IV/genética , Células Endoteliais , Morfogênese
4.
Mol Biol Cell ; 30(21): 2639-2650, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483697

RESUMO

The adherens junction (AJ) couples the actin cytoskeletons of neighboring cells to allow mechanical integration and tissue organization. The physiological demands of intercellular adhesion require that the AJ be responsive to dynamic changes in force while maintaining mechanical load. These demands are tested in the heart, where cardiomyocyte AJs must withstand repeated cycles of actomyosin-mediated contractile force. Here we show that force-responsive cardiomyocyte AJs recruit actin-binding ligands to selectively couple actin networks. We employed a panel of N-cadherin-αE-catenin fusion proteins to rebuild AJs with specific actin linkages in N-cadherin-null cardiomyocytes. In this system, vinculin recruitment was required to rescue myofibril integration at nascent contacts. In contrast, loss of vinculin from the AJ disrupted junction morphology and blocked myofibril integration at cell-cell contacts. Our results identify vinculin as a critical link to contractile actomyosin and offer insight to how actin integration at the AJ is regulated to provide stability under mechanical load.


Assuntos
Citoesqueleto de Actina/metabolismo , Junções Aderentes/metabolismo , Miócitos Cardíacos/metabolismo , Vinculina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Animais Recém-Nascidos , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Miócitos Cardíacos/citologia , Ligação Proteica , Vinculina/genética , alfa Catenina/genética , alfa Catenina/metabolismo
5.
PLoS Genet ; 15(2): e1007720, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30763317

RESUMO

The adherens junction couples the actin cytoskeletons of neighboring cells to provide the foundation for multicellular organization. The core of the adherens junction is the cadherin-catenin complex that arose early in the evolution of multicellularity to link actin to intercellular adhesions. Over time, evolutionary pressures have shaped the signaling and mechanical functions of the adherens junction to meet specific developmental and physiological demands. Evolutionary rate covariation (ERC) identifies proteins with correlated fluctuations in evolutionary rate that can reflect shared selective pressures and functions. Here we use ERC to identify proteins with evolutionary histories similar to the Drosophila E-cadherin (DE-cad) ortholog. Core adherens junction components α-catenin and p120-catenin displayed positive ERC correlations with DE-cad, indicating that they evolved under similar selective pressures during evolution between Drosophila species. Further analysis of the DE-cad ERC profile revealed a collection of proteins not previously associated with DE-cad function or cadherin-mediated adhesion. We then analyzed the function of a subset of ERC-identified candidates by RNAi during border cell (BC) migration and identified novel genes that function to regulate DE-cad. Among these, we found that the gene CG42684, which encodes a putative GTPase activating protein (GAP), regulates BC migration and adhesion. We named CG42684 raskol ("to split" in Russian) and show that it regulates DE-cad levels and actin protrusions in BCs. We propose that Raskol functions with DE-cad to restrict Ras/Rho signaling and help guide BC migration. Our results demonstrate that a coordinated selective pressure has shaped the adherens junction and this can be leveraged to identify novel components of the complexes and signaling pathways that regulate cadherin-mediated adhesion.


Assuntos
Actinas/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Citoesqueleto de Actina/metabolismo , Junções Aderentes/metabolismo , Animais , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Transdução de Sinais/fisiologia
6.
Lab Chip ; 17(22): 3898-3908, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29058002

RESUMO

Microinjection is an established and reliable method to deliver biological reagents such as transgenic constructs and drugs, to specific locations inside organisms such as the Drosophila embryo and C. elegans worm. In this paper, a simple compliant mechanism based PDMS-microinjection system has been demonstrated. Unlike conventional microinjectors, this unique system could allow one to precisely insert a long taper microneedle laterally and at various positions inside the length of the Drosophila embryo (up to 250 µm) with the resolution of 5 µm. Volumes as low as 30 pL with accuracy of ±10 pL were delivered inside the embryo via pressure pulses. The device has been used to study the effect of toxins on cardiogenesis in Drosophila embryos. Using this device, we demonstrate that the cardioblast (CB) migration velocity is modified in a dose sensitive manner to varying doses of injected sodium azide (NaN3) and, for the first time, quantify the effect of the toxin on heart assembly. Injection with 40 pL of NaN3 was shown to decrease CB migration velocity and filopodia number at concentrations above 10 mM, while embryos injected with the tracer Rhodamine B (0 mM NaN3) displayed no significant difference when compared to uninjected embryos. This device can be potentially used for other embryonic assays, which require accurate delivery of the reagents to a specific location within the embryo.


Assuntos
Drosophila , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas Analíticas Microfluídicas/instrumentação , Microinjeções/instrumentação , Técnicas de Cultura de Tecidos/instrumentação , Animais , Drosophila/efeitos dos fármacos , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Embrião não Mamífero , Desenho de Equipamento , Corantes Fluorescentes , Testes de Toxicidade/instrumentação
7.
PLoS One ; 12(2): e0171905, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28192468

RESUMO

Matrix Metalloproteinases (Mmps) degrade glycoproteins and proteoglycans of the extracellular matrix (ECM) or cell surface and are crucial for morphogenesis. Mmps and their inhibitors are expressed during early stages of cardiac development in vertebrates and expression is altered in multiple congenital cardiomyopathies such as cardia bifida. Drosophila genome encodes two copies of Mmps, Mmp1 and Mmp2 whereas in humans up to 25 Mmps have been identified with overlapping functions. We investigated the role of Mmps during embryonic heart development in Drosophila, a process which is morphogenetically similar to early heart tube formation in vertebrates. We demonstrate that the two Mmps in Drosophila have distinct and overlapping roles in cell motility, cell adhesion and cardiac lumenogenesis. We determined that Mmp1 and Mmp2 promote Leading Edge membrane dynamics of cardioblasts during collective migration. Mmp2 is essential for cardiac lumen formation, and mutants generate a cardia bifida phenotype. Mmp1 is required for luminal expansion. Mmp1 and Mmp2 both localise to the basal domains of cardiac cells, however, occupy non-overlapping domains apically. Mmp1 and Mmp2 regulate the proteoglycan composition and size of the apical and basal ECM, yet only Mmp2 is required to restrict ECM assembly to the lumen. Mmp1 negatively regulates the size of the adhesive Cadherin cell surface domain, whereas in a complementary fashion, Mmp2 negatively regulates the size of the Integrin-ECM domain and thereby prescribes the domain to establish and restrict Slit morphogen signalling. Inhibition of Mmp activity through ectopic expression of Tissue Inhibitor of Metalloproteinase in the ectoderm blocks lumen formation. Therefore, Mmp expression and function identifies ECM differentiation and remodelling as a key element for cell polarisation and organogenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Animais , Animais Geneticamente Modificados , Adesão Celular/genética , Movimento Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Matriz Extracelular/metabolismo , Coração/embriologia , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 2 da Matriz/genética , Microscopia Confocal , Morfogênese/genética , Mutação , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Miocárdio/citologia , Miocárdio/enzimologia , Miocárdio/metabolismo , Fenótipo , Interferência de RNA
8.
Dev Biol ; 419(2): 285-297, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27618756

RESUMO

Collective cell migration is the coordinated movement of cells, which organize tissues during morphogenesis, repair and some cancers. The motile cell membrane of the advancing front in collective cell migration is termed the Leading Edge. The embryonic development of the vertebrate and Drosophila hearts are both characterized by the coordinated medial migration of a bilateral cluster of mesodermal cells. In Drosophila, the cardioblasts form cohesive bilateral rows that migrate collectively as a unit towards the dorsal midline to form the dorsal vessel. We have characterized the collective cell migration of cardioblasts as an in vivo quantitative model to study the behaviour of the Leading Edge. We investigated whether guidance signalling through Slit and Netrin pathways plays a role in cell migration during heart development. Through time-lapse imaging and quantitative assessment of migratory behaviour of the cardioblasts in loss-of-function mutants, we demonstrate that both Slit and Netrin mediated signals are autonomously and concomitantly required to maximize migration velocity, filopodial and lamellipodial activities. Additionally, we show that another Slit and Netrin receptor, Dscam1, the role of which during heart development was previously unknown, is required for both normal migration of cardioblasts and luminal expansion. Leading edge behaviour analysis revealed a dosage dependent genetic interaction between Slit and Netrin receptors suggesting that downstream signalling through these receptors converge on a common output that increases leading edge activity of the cardioblasts. Finally, we found that guidance signalling maintains the balance between epithelial and mesenchymal characteristics of the migrating cardioblasts.


Assuntos
Movimento Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Coração/embriologia , Miócitos Cardíacos/citologia , Pseudópodes/fisiologia , Células-Tronco/citologia , Animais , Orientação de Axônios , Moléculas de Adesão Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Transição Epitelial-Mesenquimal , Proteínas Luminescentes/análise , Morfogênese , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Receptores de Netrina , Netrina-1 , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/fisiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Receptores Imunológicos/genética , Receptores Imunológicos/fisiologia , Transdução de Sinais , Imagem com Lapso de Tempo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Proteínas Roundabout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...