Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(4): 2032-2042, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38095090

RESUMO

Diphenyl phosphate (DPhP) is one of the frequently used derivatives of aryl phosphate esters and is used as a plasticizer in industrial production. Like other plasticizers, DPhP is not chemically bound and can easily escape into the environment, thereby affecting human health. DPhP has been associated with developmental toxicity, reproductive toxicity, neurodevelopmental toxicity, and interference with thyroid homeostasis. However, understanding of the underlying mechanism of DPhP on the reproductive toxicity of GC-2spd(ts) cells remains limited. For the first time, we investigated the effect of DPhP on GC-2spd(ts) cell apoptosis. By decreasing nuclear factor erythroid-derived 2-related factor (Nrf2)/p53 signaling, DPhP inhibited autophagy and promoted apoptosis. DPhP reduced total antioxidant capacity and nuclear Nrf2 and its downstream target gene expression. In addition, we investigated the protective effects of Curcumin (Cur) against DPhP toxicity. Cur attenuated the DPhP-induced rise in p53 expression while increasing Nrf2 expression. Cur inhibited DPhP-induced apoptosis in GC-2spd(ts) cells by activating autophagy via Nrf2/p53 signaling. In conclusion, our study provides new insights into the reproductive toxicity hazards of DPhP and demonstrates that Cur is an important therapeutic agent for alleviating DPhP-induced reproductive toxicity by regulating Nrf2/p53 signaling.


Assuntos
Compostos de Bifenilo , Curcumina , Humanos , Curcumina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Apoptose , Plastificantes , Autofagia
2.
Foods ; 9(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202556

RESUMO

Healthy diets are necessary for both humans and animals, including poultry. These diets contain various nutrients for maintenance and production in laying hens. Therefore, research was undertaken to explore the efficiency of various dietary flaxseed sources on the n-3 deposition in the egg yolk and gene expression in laying hens. Five dietary groups were analyzed, i.e., (i) a corn-based diet with no flaxseed (FS) as a negative control (NC), (ii) a wheat-based diet supplemented with 10% whole FS without multi-carbohydrase enzymes (MCE) as a positive control (PC), (iii) ground FS supplemented with MCE (FS), (iv) extruded flaxseed meal was supplemented with MCE (EFM), (v) flaxseed oil supplemented with MCE (FSO). Results indicated that egg weight was highest in the NC, FS, EFM, and FSO groups as compared to PC in the 12th week. Egg mass was higher in enzyme supplemented groups as compared to the PC group, but lower than NC. In the 12th week, the HDEP (hen day egg production) was highest in the FS and EFM groups as compared to FSO, PC, and NC. The FCR (feed conversion ratio) was better in enzyme supplemented groups as compared to the PC group. Enzyme addition enhanced the egg quality as compared to PC in the 12th week. The HDL-C (high-density lipoprotein cholesterol) was increased, while LDL-C (low-density lipoprotein cholesterol), VLDL-C (very-low-density lipoprotein cholesterol), TC (total cholesterol), and TG (total triglycerides) were reduced in the enzyme supplemented groups as compared to PC and NC. The FSO deposit more n-3 PUFA and docosahexaenoic acid (DHA) in the egg yolk as compared to FS and EFM groups. The expression of ACOX1, LCPT1, FADS1, FADS2, and ELOV2 genes were upregulated, while PPAR-α was downregulated in the FSO group. The LPL mRNA expression was upregulated in the FS, EFM, and FSO groups as compared to the PC and NC groups. It was inferred that FSO with enzymes at 2.5% is cost-effective, improves the hen performances, upregulated the fatty acid metabolism and ß-oxidation genes expression, and efficiently deposits optimal n-3 PUFA in the egg as per consumer's demand.

3.
Food Nutr Res ; 632019.
Artigo em Inglês | MEDLINE | ID: mdl-31839790

RESUMO

BACKGROUND: Polyunsaturated fatty acids (PUFA), particularly n-3, have beneficial effects on human health, and for this reason foodstuffs with increased content of n-3 PUFA are now very common and widely available. DESIGN: This study was conducted to investigate the effect of the duration of a flaxseed diet on Peking duck's growth performance, antioxidant status, gene expression, and fatty acid profile of the meat. A total of 792 12-day-old white Peking ducks were divided into four groups. In the control group, animals were provided with a basal diet. In the three experimental groups, animals were fed a 10% flax seed diet with vitamin E at 13, 23, and 33 days of age for 30, 20, and 10 days, respectively. RESULTS: The growth performance of the ducks decreased with flaxseed diet's duration. Both body weight and body weight gain decreased linearly while Feed conversion ratios (FCR) increased in the group of ducks fed flaxseed compared to control ducks. Serum triglycerides (TG), very low density lipoprotein (VLDL), low density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (AST) linearly decreased while high density lipoprotein cholesterol (HDL-C) and lipopolysaccharide (LPS) levels increased by feeding flaxseed up to 30 days. The expression of lipin-1 gene (LPIN-1) and fatty acid desaturase 2 (FADS2) linearly increased in ducks fed flaxseed for 30 days. Linolenic acid (n-3) and its long-chain metabolites like eicosatetraenoic acid (ETA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and total n-3 fatty acids (FA) linearly increased while the ratio of n-6 to n-3 was reduced with increased duration of flaxseed supplementation. CONCLUSION: Overall, we found that increasing the duration of flaxseed diet with vitamin E for more than 10 days had a mild adverse effect on duck's growth performance but enrichedits meat with long-chain PUFA and decreased the n-6 to n-3 ratio, providing quality meat for health-conscious consumers. A period of 20 days is good for producing n-3 enriched Peking duck meat and skin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...