Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Carcinog ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888206

RESUMO

Flavonoids, constituting the most extensive category of polyphenols, founds in a variety of plants and comprise over 9000 compounds. Diosmetin, O-methylated flavone (3',5,7-trihydroxy-4'-methoxyflavone) of flavonoid aglycone diosmin have witnessed a significant surge in recent years. Many studies showed that flavonoids induced cytotoxicity in different organ specific cancer types. Thus, current review evaluates the anticancer potential of diosmetin and shed light on its mechanism of action such as cell cycle regulation, apoptosis via both intrinsic and extrinsic pathway, autophagy and tumour progression and metastasis. It also provides comprehensive analysis of different cancer targets and their role in breast, colon, hepatic, gliomas, leukemia, lung, prostate and skin cancer. Combination studies of diosmetin to improve drug sensitivity and reduce toxicity towards normal cells has been also discussed. Besides, in vitro studies, present review also discuss the anticancer potential of diosmetin on xenograft mice model. Different natural sources of diosmetin, limitations, pharmacokinetic analysis and toxicity study also summarized in current review. The emphasis on enhancing solubility and permeability for clinical utility has been thoroughly highlighted with particular attention given to the utilization of nano formulations to overcome existing barriers. At last, in-depth analysis of current challenges and a forward-looking perspective deliberated to address the existing gaps and position it as a promising lead compound for clinical applications in cancer treatment. This discussion is boosted by diosmetin's potential anticancer properties on different cancers, makes valuable candidates in the ongoing quest for effective therapeutic interventions against cancer.

2.
Micromachines (Basel) ; 15(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793207

RESUMO

Hydrazine is considered a powerful reducing agent and catalyst, showing diverse applications in agricultural industries, toxic degradation research, and wastewater management. Additionally, hydrazine can trigger some specific reactions when combined with suitable oxidants. Due to its highly polar nature, hydrazine can easily dissolve in alcohol, water, and various other polar solvents. Therefore, it can be extensively utilized in different areas of application and industries such as rocketry and various chemical applications. Despite its beneficial properties, hydrazine is unstable, posing significant risk due to its highly toxic nature. It is extremely hazardous to both human health and the environment. It can cause various illnesses and symptoms such as dizziness, temporary blindness, damage to the central nervous system, and even death when inhaled in sufficient quantities. Therefore, it is highly important to monitor the level of hydrazine to prevent its toxic and hazardous effects on human beings and the environment. In the present study, we discuss the simple fabrication of a disposable cost-effective and eco-friendly hydrazine sensor. We used a screen-printed carbon electrode, i.e., SPCE, as a base for the construction of a hydrazine sensor. The Ti3AlC2 MAX has been used as a suitable and efficient electrode material for the fabrication of disposable hydrazine sensors. We modified the active surface of the SPCE using a drop-casting approach. The resulting Ti3AlC2 MAX modified SPCE (Ti3AlC2@SPCE) has been utilized as an efficient and low-cost hydrazine sensor. Cyclic voltammetry, i.e., CV, and linear sweep voltammetry, viz., LSV, was employed as a sensing technique in this study. The optimization of pH and electrode material loading was conducted. The Ti3AlC2@SPCE exhibited excellent sensing performance toward hydrazine oxidation. A reasonable detection limit (0.01 µM) was achieved for hydrazine sensing. The fabricated sensor also demonstrated a reasonable linear range of 1-50 µM. This work provides the design and fabrication of simple disposable Ti3AlC2@SPCE as a suitable electrode for the determination of hydrazine using LSV technology.

4.
Chem Asian J ; 19(14): e202400245, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38634677

RESUMO

A highly flexible, tunable morphology membrane with excellent thermal stability and ionic conductivity can endow lithium metal batteries with high power density and reduced dendrite growth. Herein, a porous Polyurethane (PU) membrane with an adjustable morphology was prepared by a simple nonsolvent-induced phase separation technique. The precise control of the final morphology of PU membranes can be achieved through appropriate selection of a nonsolvent, resulting a range of pore structures that vary from finger-like voids to sponge-like pores. The implementation of combinatorial DFT and experimental analysis has revealed that spongy PU porous membranes, especially PU-EtOH, show superior electrolyte wettability (472%), high porosity (75%), good mechanical flexibility, robust thermal dimensional stability (above 170 °C), and elevated ionic conductivity (1.38 mS cm-1) in comparison to the polypropylene (PP) separator. The use of PU-EtOH in Li//Li symmetric cell results in a prolonged lifespan of 800 h, surpasing the longevity of PU or PP cells. Moreover, when subjected to a high rate of 5 C, the LiFePO4/Li half-cell with a PU-EtOH porous membrane displayed better cycling performance (115.4 mAh g-1) compared to the PP separator (104.4 mAh g-1). Finally, the prepared PU porous membrane exhibits significant potential for improving the efficiency and safety of LMBs.

5.
Chem Rec ; 24(4): e202300352, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501854

RESUMO

Recently, carbon neutrality has been promoted as a potentially practical solution to global CO2 emissions and increasing energy-consumption challenges. Many attempts have been made to remove CO2 from the environment to address climate change and rising sea levels owing to anthropogenic CO2 emissions. Herein, membrane technology is proposed as a suitable solution for carbon neutrality. This review aims to comprehensively evaluate the currently available scientific research on membranes for carbon capture, focusing on innovative microporous material membranes used for CO2 separation and considering their material, chemical, and physical characteristics and permeability factors. Membranes from such materials comprise metal-organic frameworks, zeolites, silica, porous organic frameworks, and microporous polymers. The critical obstacles related to membrane design, growth, and CO2 capture and usage processes are summarized to establish novel membranes and strategies and accelerate their scaleup.

6.
Small ; : e2310431, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441366

RESUMO

Innovative advances in the exploitation of effective electrocatalytic materials for the reduction of nitrogen (N2 ) to ammonia (NH3 ) are highly required for the sustainable production of fertilizers and zero-carbon emission fuel. In order to achieve zero-carbon footprints and renewable NH3 production, electrochemical N2 reduction reaction (NRR) provides a favorable energy-saving alternative but it requires more active, efficient, and selective catalysts. In current work, sulfur vacancy (Sv)-rich NiCo2 S4 @MnO2 heterostructures are efficaciously fabricated via a facile hydrothermal approach followed by heat treatment. The urchin-like Sv-NiCo2 S4 @MnO2 heterostructures serve as cathodes, which demonstrate an optimal NH3 yield of 57.31 µg h-1  mgcat -1 and Faradaic efficiency of 20.55% at -0.2 V versus reversible hydrogen electrode (RHE) in basic electrolyte owing to the synergistic interactions between Sv-NiCo2 S4 and MnO2 . Density functional theory (DFT) simulation further verifies that Co-sites of urchin-like Sv-NiCo2 S4 @MnO2 heterostructures are beneficial to lowering the energy threshold for N2 adsorption and successive protonation. Distinctive micro/nano-architectures exhibit high NRR electrocatalytic activities that might motivate researchers to explore and concentrate on the development of heterostructures for ambient electrocatalytic NH3 generation.

7.
Adv Mater ; 36(21): e2313086, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38341608

RESUMO

A new strategy that can effectively increase the nitrogen reduction reaction performance of catalysts is proposed and verified by tuning the coordination number of metal atoms. It is found that the intrinsic activity of Mn atoms in the manganese borides (MnBx) increases in tandem with their coordination number with B atoms. Electron-deficient boron atoms are capable of accepting electrons from Mn atoms, which enhances the adsorption of N2 on the Mn catalytic sites (*) and the hydrogenation of N2 to form *NNH intermediates. Furthermore, the increase in coordination number reduces the charge density of Mn atoms at the Fermi level, which facilitates the desorption of ammonia from the catalyst surface. Notably, the MnB4 compound with a Mn coordination number of up to 12 exhibits a high ammonia yield rate (74.9 ± 2.1 µg h-1 mgcat -1) and Faradaic efficiency (38.5 ± 2.7%) at -0.3 V versus reversible hydrogen electrode (RHE) in a 0.1 m Li2SO4 electrolyte, exceeding those reported for other boron-related catalysts.

8.
Nat Ecol Evol ; 8(3): 392-399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195997

RESUMO

Overyielding, the high productivity of multispecies plant communities, is commonly seen as the result of plant genetic diversity. Here we demonstrate that biodiversity-ecosystem functioning relationships can emerge in clonal plant populations through interaction with microorganisms. Using a model clonal plant species, we found that exposure to volatiles of certain microorganisms led to divergent plant phenotypes. Assembling communities out of plants associated with different microorganisms led to transgressive overyielding in both biomass and seed yield. Our results highlight the importance of belowground microbial diversity in plant biodiversity research and open new avenues for precision ecosystem management.


Assuntos
Biodiversidade , Ecossistema , Biomassa , Plantas , Dinâmica Populacional
9.
Small ; : e2309918, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084467

RESUMO

Anode materials with high-rate performances and good electrochemical stabilities are urgently required for the grid-scale application of lithium-ion batteries (LIBs). Theoretically, transition metal borides are desirable candidates because of their appropriate working potentials and good conductivities. However, the reported metal borides exhibit poor performances owing to their lack of favorable Li+ storage sites and poor structural stabilities during long-term charging/discharging. In this work, a ternary alkali metal boride, Li1.2 Ni2.5 B2 , which displays a high Li+ storage capacity and remarkable electrochemical stability and an excellent rate performance is studied. In contrast to conventional transition metal borides, the introduction of Li atoms facilitates the formation of 1D Ni/B-based honeycomb channels during synthesis. This Ni/B framework successfully sustains the strain during Li+ intercalation and deintercalation, and thus, the optimized Li1.2 Ni2.5 B2 anode exhibits an excellent cycle stability over 500 charge/discharge cycles. This electrode also exhibits superior reversible capacities of 350, 183, and 80 mA h g-1 at 0.1, 1, and 5 A g-1 , respectively, indicating the considerable potential of the 1D Ni/B framework as a commercially available fast-charging LIB anode.

10.
Microbiol Spectr ; 11(4): e0151023, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37534988

RESUMO

The oomycete Pythium oligandrum is a potential biocontrol agent to control a wide range of fungal and oomycete-caused diseases, such as Pythium myriotylum-caused rhizome rot in ginger, leading to reduced yields and compromised quality. Previously, P. oligandrum has been studied for its plant growth-promoting potential by auxin production and induction of disease resistance by elicitors such as oligandrin. Volatile organic compounds (VOCs) play beneficial roles in sustainable agriculture by enhancing plant growth and resistance. We investigated the contribution of P. oligandrum-produced VOCs on plant growth and disease suppression by initially using Nicotiana benthamiana plants for screening. P. oligandrum VOCs significantly enhanced tobacco seedling and plant biomass contents. Screening of the individual VOCs showed that 3-octanone and hexadecane promoted the growth of tobacco seedlings. The total VOCs from P. oligandrum also enhanced the shoot and root growth of ginger plants. Transcriptomic analysis showed a higher expression of genes related to plant growth hormones and stress responses in the leaves of ginger plants exposed to P. oligandrum VOCs. The concentrations of plant growth hormones such as auxin, zeatin, and gibberellic acid were higher in the leaves of ginger plants exposed to P. oligandrum VOCs. In a ginger disease biocontrol assay, the VOC-exposed ginger plants infected with P. myriotylum had lower levels of disease severity. We conclude that this study contributes to understanding the growth-promoting mechanisms of P. oligandrum on ginger and tobacco, priming of ginger plants against various stresses, and the mechanisms of action of P. oligandrum as a biocontrol agent. IMPORTANCE Plant growth promotion plays a vital role in enhancing production of agricultural crops, and Pythium oligandrum is known for its plant growth-promoting potential through production of auxins and induction of resistance by elicitors. This study highlights the significance of P. oligandrum-produced VOCs in plant growth promotion and disease resistance. Transcriptomic analyses of leaves of ginger plants exposed to P. oligandrum VOCs revealed the upregulation of genes involved in plant growth hormone signaling and stress responses. Moreover, the concentration of growth hormones significantly increased in P. oligandrum VOC-exposed ginger plants. Additionally, the disease severity was reduced in P. myriotylum-infected ginger plants exposed to P. oligandrum VOCs. In ginger, P. myriotylum-caused rhizome rot disease results in severe losses, and biocontrol has a role as part of an integrated pest management strategy for rhizome rot disease. Overall, growth enhancement and disease reduction in plants exposed to P. oligandrum-produced VOCs contribute to its role as a biocontrol agent.


Assuntos
Pythium , Compostos Orgânicos Voláteis , Zingiber officinale , Pythium/genética , Compostos Orgânicos Voláteis/farmacologia , Zingiber officinale/microbiologia , Resistência à Doença , Nicotiana , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
11.
J Biochem Mol Toxicol ; 37(11): e23474, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37477197

RESUMO

Flavonoids are among the largest groups of secondary metabolites. Studies suggest that dietary intake of flavonoids reduces the risk of cancer. 3,5,7-trihydroxyflavone (THF) belongs to the flavone class of flavonoids and potentially inhibits the growth of many cancers; however, it is unexplored in prostate cancer. This study reports the antiproliferative potential of THF in prostate cancer cell line via reactive oxygen species (ROS)-mediated cascades and examines the tumour reduction potential in swiss albino mice. The potency of THF was evaluated by employing cytotoxicity assays and wound healing assays. Cell cycle, ROS, mitochondrial membrane potential (MMP), and Annexin-V-FITC assay were performed using a flow cytometer. In vivo, anticancer potential was achieved using the mice Ehrlich Ascites Carcinoma (EAC) model. THF inhibits cell growth with IC50 of 64.30 µM (MTT), 81.22 µM (NRU) and 25.81 µM (SRB), substantiated by cell migration assay. Cell-cycle analysis revealed that THF increases the subdiploid population. Furthermore, the Annexin-V-FITC assay evoked a significant induction of late apoptosis at a higher concentration of THF. THF also disrupts MMP, caused by an increased generation of ROS. In the EAC model, THF significantly inhibits tumour growth and increases the percent survival of mice and ROS levels in EAC cells. Hence, it may be concluded that THF might execute its antiproliferative effect via inducing ROS generation and could be a promising lead for preclinical and clinical validations.


Assuntos
Adenocarcinoma , Neoplasias da Próstata , Masculino , Animais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Androgênios , Fluoresceína-5-Isotiocianato , Próstata/metabolismo , Apoptose , Proliferação de Células , Flavonoides/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Anexinas , Linhagem Celular Tumoral
12.
Chemistry ; 29(27): e202300250, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36958938

RESUMO

In this study, a highly air stable and eco-friendly methyl ammonium bismuth iodide (MA3 Bi2 I9 ) perovskite-like material has been prepared. After physiochemical characterizations, the synthesized MA3 Bi2 I9 was utilized as photo-catalyst towards hydrogen production. It is important to design and synthesize lead (Pb)-free perovskite-like material (MA3 Bi2 I9 ) for photo-catalytic hydrogen-production applications. The synthesized MA3 Bi2 I9 exhibits excellent photo-catalytic hydrogen generation with a production rate of 11.43 µmolg-1 h-1 . In the presence of a platinum co-catalyst, the hydrogen production rate further increases to 172.44 µmolg-1 h-1 . The MA3 Bi2 I9 photo-catalyst also demonstrates excellent cyclic stability.

13.
Appl Environ Microbiol ; 89(2): e0203622, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744963

RESUMO

The oomycete Pythium oligandrum is a soil-inhabiting parasite and predator of both fungi and oomycetes, and uses hydrolytic enzymes extensively to penetrate and hydrolyze its host or prey. Other mechanisms have been studied less, and we investigated the contribution of P. oligandrum-produced volatile organic compounds (VOCs) to parasitism. The growth-inhibiting activity of P. oligandrum VOCs was tested on Pythium myriotylum-a host or prey of P. oligandrum-coupled with electron microscopy, and biochemical and transcriptomic analyses. The P. oligandrum-produced VOCs reduced P. myriotylum growth by 80% and zoospore levels by 60%. Gas chromatography-mass spectrometry (GC-MS) identified 23 VOCs, and methyl heptenone, d-limonene, 2-undecanone, and 1-octanal were potent inhibitors of P. myriotylum growth and led to increased production of reactive oxygen species at a concentration that did not inhibit P. oligandrum growth. Exposure to the P. oligandrum VOCs led to shrinkage of P. myriotylum hyphae and lysis of the cellular membranes and organelles. Transcriptomics of P. myriotylum exposed to the P. oligandrum VOCs at increasing levels of growth inhibition initially showed a strong upregulation of putative detoxification-related genes that was not maintained later. The inhibition of P. myriotylum growth continued immediately after the exposure to the VOCs was discontinued and led to the reduced infection of its plant hosts. The VOCs produced by P. oligandrum could be another factor alongside hydrolytic enzymes contributing to its ecological role as a microbial parasite in particular ecological niches such as in soil, and may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations. IMPORTANCE Microbe-microbe interactions in nature are multifaceted, with multiple mechanisms of action, and are crucial to how plants interact with microbes. Volatile organic compounds (VOCs) have diverse functions, including contributing to parasitism in ecological interactions and potential applications in biocontrol. The microbial parasite P. oligandrum is well known for using hydrolytic enzymes as part of its parasitism. We found that P. oligandrum VOCs reduced the growth of, and caused major damage to, the hyphae of P. myriotylum (a host or prey of P. oligandrum). Transcriptomic analyses of P. myriotylum exposed to the VOCs revealed the upregulation of genes potentially involved in an attempt to detoxify the VOCs. The inhibitory effects of the VOCs had a knock-on effect by reducing the virulence of P. myriotylum toward its plant hosts. The P. oligandrum VOCs could contribute to its ecological role as a microbial parasite. The VOCs analyzed here may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations.


Assuntos
Pythium , Compostos Orgânicos Voláteis , Pythium/genética , Compostos Orgânicos Voláteis/farmacologia , Fungos , Interações Microbianas , Solo
14.
ISME J ; 17(3): 443-452, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635489

RESUMO

Volatile organic compounds (VOCs) produced by soil bacteria have been shown to exert plant pathogen biocontrol potential owing to their strong antimicrobial activity. While the impact of VOCs on soil microbial ecology is well established, their effect on plant pathogen evolution is yet poorly understood. Here we experimentally investigated how plant-pathogenic Ralstonia solanacearum bacterium adapts to VOC-mixture produced by a biocontrol Bacillus amyloliquefaciens T-5 bacterium and how these adaptations might affect its virulence. We found that VOC selection led to a clear increase in VOC-tolerance, which was accompanied with cross-tolerance to several antibiotics commonly produced by soil bacteria. The increasing VOC-tolerance led to trade-offs with R. solanacearum virulence, resulting in almost complete loss of pathogenicity in planta. At the genetic level, these phenotypic changes were associated with parallel mutations in genes encoding lipopolysaccharide O-antigen (wecA) and type-4 pilus biosynthesis (pilM), which both have been linked with outer membrane permeability to antimicrobials and plant pathogen virulence. Reverse genetic engineering revealed that both mutations were important, with pilM having a relatively larger negative effect on the virulence, while wecA having a relatively larger effect on increased antimicrobial tolerance. Together, our results suggest that microbial VOCs are important drivers of bacterial evolution and could potentially be used in biocontrol to select for less virulent pathogens via evolutionary trade-offs.


Assuntos
Bacillus , Ralstonia solanacearum , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Virulência/genética , Adaptação Fisiológica , Solo , Ralstonia solanacearum/genética , Doenças das Plantas/microbiologia
15.
Phys Chem Chem Phys ; 25(3): 2439-2450, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598957

RESUMO

The advancement of metal-catalyzed copolymers is a formidable challenge for achieving distinct catalytic properties to compete with existing plastic polymers in industrial commodities. Herein, we reveal the roles of electronic and steric environments in the thermodynamic preference of microstructures in ethylene/divinyl formal (DVF) co-polymerization using a Pd catalyst under mild conditions to accommodate the respective industrial applicabilities. The insertion products of DVF result in the alteration of the steric crowding, ultimately favoring the efficient formation of cyclic units having potential applications in the manufacture of high-strength fibers. More specifically, to achieve an improved yield of the end copolymer, we tuned the catalytic activity and regioselectivity through a variety of catalysts during ethylene-DVF co-polymerization. The naphthalene-bridged (P^O)PdMe catalyst was found to be promising in terms of the least hindered (buried volume of 47.8%) environment with the thermodynamic preference of 2,1-insertion with an energy of 5.1 kcal mol-1 among all the Pd-metal based catalysts. The highest activity with moderate energy barriers of the proposed catalyst will open new avenues for achieving a variety of potential applications, which is typically not possible using existing polymerization techniques.

16.
Small ; 19(12): e2206176, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36587971

RESUMO

Electrolyte modulation and electrode structure design are two common strategies to suppress dendrites growth on Li metal anode. In this work, a self-adaptive electrode construction method to suppress Li dendrites growth is reported, which merges the merits of electrolyte modulation and electrode structure design strategies. In detail, negatively charged titania nanosheets with densely packed nanopores on them are prepared. These holey nanosheets in the electrolyte move spontaneously onto the anode under electrical field, building a mesoporous structure on the electrode surface. The as-formed porous electrode has large surface area with good lithiophilicity, which can efficiently transfer lithium ion (Li+ ) inside the electrode, and induce the genuine lithium plating/stripping. Moreover, the negative charges and nanopores on the sheets can also regulate the lithium-ion flux to promote uniform deposition of Li metal. As a result, the symmetric and full cells using the holey titania nanosheets containing electrolyte, show much better performance than the ones using electrolyte without holey nanosheets inside. This work points out a new route for the practical applications of Li-metal batteries.

17.
ACS Appl Mater Interfaces ; 14(47): 52794-52805, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36394388

RESUMO

Lithium-sulfur (Li-S) batteries are one of the emerging candidates for energy storage systems due to their high theoretical energy density and the abundance/nontoxicity/low cost of sulfur. Compared with conventional lithium-ion batteries, multiple new challenges have been brought into this advanced battery system, such as polysulfide shuttling in conventional polyolefin separators and undesired lithium dendrite formation of the Li metal anode. These issues severely affect the cell performance and impede their practical applications. Herein, we develop a poly(ether imide) (PEI)-based membrane with a sponge-like pore morphology as the separator for the Li-S battery by a simplified phase inversion method. This new separator can not only alleviate the new challenges in Li-S batteries but also exhibit excellent ion conductivity, better thermal stability, and higher mechanical strength compared to those of the conventional polypropylene (PP) separator. A combined experimental and theoretical study indicates that the sponge-like morphology of the PEI membrane and its good wettability toward the electrolyte can facilitate uniform ion transportation and suppress dendrite growth. Meanwhile, the PEI molecules exhibit a strong interaction with polysulfides and avoid their shuttling effectively. As a result, the PEI-based Li-S battery shows a much better performance from various aspects (capacity, rate capability, and cycling stability) than that of the PP-based Li-S battery, especially at high charge/discharge current densities and high sulfur loadings. Since the developed PEI membrane can be easily scaled up, this work may accelerate the practical applications of Li-S batteries from the point of separators.

18.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431879

RESUMO

Synthesis of nanomaterials with specific morphology is an essential aspect for the optimisation of its properties and applications. The application of nanomaterials is being discussed in a wide range of areas, one of which is directly relevant to the environment through photocatalysis. To produce an effective photocatalyst for environmental applications, morphology plays an important role as it affects the surface area, interfaces, crystal facets and active sites, which ultimately affects efficiency. The method of synthesis and synthesis temperature can be the basic considerations for the evaluation of a particular nanomaterial. In this study, we have considered the aspects of morphology with a basic understanding and analyzed them in terms of nanomaterial efficacy in photocatalysis. Different morphologies of specific nanomaterials such as titanium dioxide, zinc oxide, silver phosphate, cadmium sulphide and zinc titanate have been discussed to come to reasonable conclusions. Morphologies such as nanorods, nanoflower, nanospindles, nanosheets, nanospheres and nanoparticles were compared within and outside the domain of given nanomaterials. The different synthesis strategies adopted for a specific morphology have been compared with the photocatalytic performance. It has been observed that nanomaterials with similar band gaps show different performances, which can be linked with the reaction conditions and their nanomorphology as well. Materials with similar morphological structures show different photocatalytic performances. TiO2 nanorods appear to have the best features of efficient photocatalyst, while the nanoflowers show very low efficiency. For CdS, the nanoflower is the best morphology for photocatalysis. It appears that high surface area is the key apart from the morphology, which controls the efficiency. The overall understanding by analyzing all the available information has enumerated a path to select an effective photocatalyst amongst the several nanomaterials available. Such an analysis and comparison is unique and has provided a handle to select the effective morphology of nanomaterials for photocatalytic applications.

19.
Pathogens ; 11(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365003

RESUMO

Rice (Oryza sativa L.) is a major cereal and staple food crop worldwide, and its growth and production are affected by several fungal and bacterial phytopathogens. Bacterial blight (BB) is one of the world's most devastating rice diseases, caused by Xanthomonas oryzae pv. oryzae (Xoo). In the current study, Bacillus atrophaeus FA12 and B. cabrialesii FA26 were isolated from the rice rhizosphere and characterized as having broad-range antifungal and antibacterial activities against various phytopathogens, including Xoo. In addition, the selected strains were further evaluated for their potent rice growth promotion and suppression efficacy against BB under greenhouse conditions. The result shows that FA12 and FA26, applied as seed inoculants, significantly enhanced the vigor index of rice seedlings by 78.89% and 108.70%, respectively. Suppression efficacy against BB disease by FA12 and FA26 reached up to 59.74% and 54.70%, respectively, in pot experiments. Furthermore, MALDI-TOF MS analysis of selected strains revealed the masses ranged from m/z 1040 to 1540, representing that iturins and fengycin are the major antimicrobial compounds in the crude extracts, which might have beneficial roles in rice defence responses against BB. In conclusion, FA12 and FA26 possess broad-range antagonistic activity and have the capability to promote plant growth traits. More importantly, applying these strains has a high potential for implementing eco-friendly, cost-effective, and sustainable management practices for BB disease.

20.
Nanomaterials (Basel) ; 12(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234533

RESUMO

Recently, the design and fabrication of lead (Pb)-free perovskite or perovskite-like materials have received great interest for the development of perovskite solar cells (PSCs). Manganese (Mn) is a less toxic element, which may be an alternative to Pb. In this work, we explored the role of NH3(CH2)2NH3MnCl4 perovskite as a light absorber layer via SCAPS-1D. A Pb-free PSC device (FTO/TiO2/NH3(CH2)2NH3MnCl4/spiro-OMeTAD/Au) was simulated via SCAPS-1D software. The simulated Pb-free PSCs (FTO/TiO2/NH3(CH2)2NH3MnCl4/spiro-OMeTAD/Au) showed decent power conversion efficiency (PCE) of 20.19%. Further, the impact of the thickness of absorber (NH3(CH2)2NH3MnCl4), electron transport (TiO2), and hole-transport (spiro-OMeTAD) layers were also investigated. Subsequently, various electron transport layers (ETLs) were also introduced to investigate the role of ETL. In further studies, an NH3(CH2)2NH3MnCl4-based PSC device (FTO/TiO2/NH3(CH2)2NH3MnCl4/spiro-OMeTAD/Au) was also developed (humidity = ~30-40%). The fabricated PSCs displayed an open circuit voltage (Voc) of 510 mV with a PCE of 0.12%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...