Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 29(6): 103305, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35602866

RESUMO

Salinity is a worldwide problem limiting the plant growth and risking food security. This study was conducted to examine exogenous application of silicon (Si), gibberellic acid (GA3) upon the ion transport, growth, yield, and antioxidant enzymes activities of pea plant in saline conditions. Two pea varieties Meteor-FSD and Samrina Zard were pre-treated with GA3 (10-4 M) for 12 h. Plants were allowed to grow with or without silicon in washed silica sand. Ten days old seedlings were shifted in pots with 10 kg soil. Twenty-five days old plants were exposed to 0 and 5 dS m-1 sodium stress. Results showed that exogenous application of GA3 + Si was the best treatment for increasing plant biomass and yield in the presence and absence of NaCl. Furthermore, application of Si or GA3 enhanced chlorophyll content in the leaves, thereby increasing the net assimilation rate of pea varieties under NaCl stress by increasing the antioxidant enzyme activity. Treatment of Si alone or in combination with GA3 significantly reduced Na+ movement in both pea varieties. Results showed that Si has more prominent role than GA3 alone to build-up high plant biomass, yield, soluble protein content and reduction of Na+ transport. Samrina Zard variety showed higher yield, shoot and root dry weight as compared to Meteor-FSD variety in presence and absence of salt. It was concluded that Si can be used as a nutrient for pea under saline or non-saline conditions. Moreover, application of GA3 has a potential role for increasing salinity tolerance, mostly in sensitive pea varieties.

2.
Saudi J Biol Sci ; 28(10): 5890-5896, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34588905

RESUMO

Reducing toxic effects of pesticide residues in agricultural soils through organic amendments is an eco-friendly technique. Cypermethrin (CYP) and Chlorpyrifos (CPP) are widely used pesticides in peach growing orchards in Swat valley of Pakistan. The aim of the current study was to investigate the degradation behavior of CYP and CPP in soil by the application of different combination of organic/inorganic amendments. A total of 36 soil samples were used in the current incubation study which was collected from 4 peach orchards in district Swat, Khyber Pakhtunkhwa (KPK), Pakistan. Different amendments including urea, farm yard manure (FYM) and saprofil were applied alone and in various combinations. The initial concentrations of CYP and CPP in the tested soil was range from 0.94 to 4.8 mg kg-1 and 0.024 to 4.12 to mg kg-1. Soil samples were taken at 5, 15, 30 and 45 days after exposure to different treatments. The extraction of pesticides from soils was done through quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction method. Soils amended with urea, FYM and saprofil individually and in combinations significantly reduced the concentrations of CYP and CPP. However, the concentration of CYP (24.6) and CPP (27.0) in soil showed higher reduction through the application of FYM. While the concentrations of CYP and CPP were declined with the 5, 15, 30 and 45 days intervals, however, reduction at day 30 and 45 was faster for CYP (16.7 to 8.46) than CPP (20.2 to 12.3). At day 5 and 15, the CYP (42.5 to 30.7) was slightly lower than CPP (42.9 to 32.7).The highest half-life value (t ½) of CYP was in control treatment (32 days) and the shortest was soil amended with FYM (18.6 days). While the longest half-life value (t ½) of CPP was maximum in control treatment (42 days) and the minimum was in FYM (22 days). Based on our findings, it was concluded that soil application of FYM is recommended for the degradation of CYP and CPP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...