Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266006

RESUMO

Plasticized lithium-ion-based-conducting polymer blend electrolytes based on poly(vinyl alcohol) (PVA):chitosan (CS) polymer was prepared using a solution cast technique. The conductivity of the polymer electrolyte system was found to be 8.457 × 10-4 S/cm, a critical factor for electrochemical device applications. It is indicated that the number density (n), diffusion coefficient (D), and mobility (µ) of ions are increased with the concentration of glycerol. High values of dielectric constant and dielectric loss were observed at low frequency region. A correlation was found between the dielectric constant and DC conductivity. The achieved transference number of ions (tion) and electrons (te) for the highest conducting plasticized sample were determined to be 0.989 and 0.011, respectively. The electrochemical stability for the highest conducting sample was 1.94 V, indicated by linear sweep voltammetry (LSV). The cyclic voltammetry (CV) response displayed no redox reaction peaks through its entire potential range. Through the constructing electric double-layer capacitor, the energy storage capacity of the highest conducting sample was investigated. All decisive parameters of the EDLC were determined. At the first cycle, the specific capacitance, internal resistance, energy density, and power density were found to be 130 F/g, 80 Ω, 14.5 Wh/kg, and 1100 W/kg, respectively.

2.
Molecules ; 25(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916841

RESUMO

In the present work, phthaloyl chitosan (PhCh)-based gel polymer electrolytes (GPEs) were prepared using dimethylformamide (DMF) as a solvent, ethyl carbonate (EC) as a co-solvent, and a set of five quaternaries of potassium iodide (KI) as a doping salt, which is a mixed composition of iodine (I2). The prepared GPEs were applied to dye-sensitized solar cells (DSSC) to observe the effectiveness of the electrolyte, using mesoporous TiO2, which was sensitized with N3 dye as the sensitizer. The incorporation of the potassium iodide-based redox couple in a polymer electrolyte is fabricated for dye-sensitized solar cells (DSSCs). The number of compositions was based on the chemical equation, which is 1:1 for KI:I2. The electrical performance of prepared GPE systems have been assessed using electrical impedance spectroscopy (EIS), and dielectric permittivity. The improvement in the ionic conductivity of PhCh-based GPE was observed with the rise of salt concentration, and the maximum ionic conductivity (4.94 × 10-2 S cm-1) was achieved for the 0.0012 mol of KI:I2. The study of dielectric permittivity displays that ions with a high dielectric constant are associated with a high concentration of added ions. Furthermore, the gel polymer electrolyte samples were applied to DSSCs to detect the conversion effectiveness of the electrolytes. For electrolytes containing various content of KI:I2 the highest conversion efficiency (η%) of DSSC obtained was 3.57% with a short circuit current density (Jsc) of 20.33 mA cm-2, open-circuit voltage (Voc) of 0.37 V, fill factor (FF) of 0.47, as well as a conductivity of 2.08 × 10-2 S cm-1.


Assuntos
Quitosana/química , Corantes/química , Polímeros/química , Iodeto de Potássio/química , Energia Solar , Condutividade Elétrica , Impedância Elétrica , Fontes de Energia Elétrica , Eletrólitos , Géis/química , Iodetos/química , Íons , Oxirredução , Sais , Solventes , Análise Espectral
3.
Polymers (Basel) ; 12(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660095

RESUMO

In this study, solid polymer blend electrolytes (SPBEs) based on chitosan (CS) and methylcellulose (MC) incorporated with different concentrations of ammonium fluoride (NH4F) salt were synthesized using a solution cast technique. Both Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results confirmed a strong interaction and dispersion of the amorphous region within the CS:MC system in the presence of NH4F. To gain better insights into the electrical properties of the samples, the results of electrochemical impedance spectroscopy (EIS) were analyzed by electrical equivalent circuit (EEC) modeling. The highest conductivity of 2.96 × 10-3 S cm-1 was recorded for the sample incorporated with 40 wt.% of NH4F. Through transference number measurement (TNM) analysis, the fraction of ions was specified. The electrochemical stability of the electrolyte sample was found to be up to 2.3 V via the linear sweep voltammetry (LSV) study. The value of specific capacitance was determined to be around 58.3 F/g. The stability test showed that the electrical double layer capacitor (EDLC) system can be recharged and discharged for up to 100 cycles with an average specific capacitance of 64.1 F/g. The synthesized EDLC cell was found to exhibit high efficiency (90%). In the 1st cycle, the values of internal resistance, energy density and power density of the EDLC cell were determined to be 65 Ω, 9.3 Wh/kg and 1282 W/kg, respectively.

4.
Nanomaterials (Basel) ; 9(11)2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31684041

RESUMO

Interconnected spherical metallic silver nanoparticles (Ag NPs) were synthesized in the current study using a green chemistry method. The reduction of silver ions to Ag NPs was carried out with low-cost and eco-friendly quince leaves. For the first time, it was confirmed that the extract solution of quince leaves could be used to perform green production of Ag NPs. Fourier transform infrared spectroscopy (FTIR) was conducted to identify the potential biomolecules that were involved in the Ag NPs. The results depicted that the biosynthesis of Ag NPs through the extract solution of quince leaf was a low-cost, clean, and safe method, which did not make use of any contaminated element and hence, had no undesirable effects. The majority of the peaks in the FTIR spectrum of quince leaf extracts also emerged in the FTIR spectrum of Ag NPs but they were found to be of less severe intensity. The silver ion reduction was elaborated in detail on the basis of the FTIR outcomes. In addition, through X-ray diffraction (XRD) analysis, the Ag NPs were also confirmed to be crystalline in type, owing to the appearance of distinct peaks related to the Ag NPs. The creation of Ag NPs was furthermore confirmed by using absorption spectrum, in which a localized surface plasmon resonance (LSPR) peak at 480 nm was observed. The LSPR peak achieved in the present work was found to be of great interest compared to those reported in literature. Field emission scanning electron microscopy (FESEM) images were used to provide the morphology and grain size of Ag NPs. It was shown from the FESEM images that the Ag NPs had interconnected spherical morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...