Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451049

RESUMO

Phytoplasmas inhabit phloem sieve elements and cause abnormal growth and altered sugar partitioning. However, how they interact with phloem functions is not clearly known. The phloem responses were investigated in tomatoes infected by "Candidatus Phytoplasma solani" at the beginning of the symptomatic stage, the first symptoms appearing in the newly emerged leaf at the stem apex. Antisense lines impaired in the phloem sucrose transporters SUT1 and SUT2 were included. In symptomatic sink leaves, leaf curling was associated with higher starch accumulation and the expression of defense genes. The analysis of leaf midribs of symptomatic leaves indicated that transcript levels for genes acting in the glycolysis and peroxisome metabolism differed from these in noninfected plants. The phytoplasma also multiplied in the three lower source leaves, even if it was not associated with the symptoms. In these leaves, the rate of phloem sucrose exudation was lower for infected plants. Metabolite profiling of phloem sap-enriched exudates revealed that glycolate and aspartate levels were affected by the infection. Their levels were also affected in the noninfected SUT1- and SUT2-antisense lines. The findings suggest the role of sugar transporters in the responses to infection and describe the consequences of impaired sugar transport on the primary metabolism.


Assuntos
Proteínas de Transporte de Monossacarídeos/genética , Floema/genética , Phytoplasma/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Açúcares/metabolismo , Transporte Biológico , Metabolismo dos Carboidratos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno , Metabolômica/métodos , Proteínas de Transporte de Monossacarídeos/metabolismo , Fenótipo , Floema/metabolismo , Floema/ultraestrutura , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Amido/metabolismo
2.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878312

RESUMO

Flavescence dorée (FD) is a severe epidemic disease of grapevines caused by FD phytoplasma (FDP) transmitted by the leafhopper vector Scaphoideus titanus. The recent sequencing of the 647-kbp FDP genome highlighted an unusual number of genes encoding ATP-dependent zinc proteases FtsH, which have been linked to variations in the virulence of "Candidatus Phytoplasma mali" strains. The aims of the present study were to predict the FtsH repertoire of FDP, to predict the functional domains and topologies of the encoded proteins in the phytoplasma membrane and to measure the expression profiles in different hosts. Eight complete ftsH genes have been identified in the FDP genome. In addition to ftsH6, which appeared to be the original bacterial ortholog, the other seven gene copies were clustered on a common distinct phylogenetic branch, suggesting intra-genome duplication of ftsH. The expression of these proteins, quantified in plants and insect vectors in natural and experimental pathosystems, appeared to be modulated in a host-dependent manner. Two of the eight FtsH C-tails were predicted by Phobius software to be extracellular and, therefore, in direct contact with the host cellular content. As phytoplasmas cannot synthesize amino acids, our data raised questions regarding the involvement of FtsH in the adaptation to hosts via potentially enhanced recycling of phytoplasma cellular proteins and host protein degradation.


Assuntos
Insetos/metabolismo , Phytoplasma/metabolismo , Plantas/metabolismo , Animais , Genoma de Planta/genética , Software , Virulência
3.
Front Plant Sci ; 7: 1762, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965681

RESUMO

Flavescence dorée (FD) is a quarantine disease of grapevine, involving interactions between the plants, leafhopper vectors, and FD phytoplasma. Characterizing the susceptibility of vine varieties could limit disease propagation. After extensive surveys in vineyards, we showed that Cabernet Sauvignon (CS) is highly susceptible, with a high proportion of symptomatic branches and phytoplasma titers, in contrast to Merlot (M). Localized insect transmissions and grafting showed that phytoplasma circulate in the whole plant in the CS cultivar, but in M they are restricted to the transmission point. Insect-mediated transmission under high confinement mimicking natural conditions confirmed these phenotypes and allowed the classification of 28 Vitis accessions into three distinct categories, according to the percentage of infected plants and their phytoplasma titers. Reduced symptoms, low phytoplasma titers, and low percentages of infected plants were found to be associated in the Vitis vinifera cultivars tested. Interestingly, the low susceptibility of M was observed for one of its parents, i.e., Magdeleine Noire des Charentes. Rootstocks and their Vitis parents, although having high percentages of infected plants and intermediate to high phytoplasma titers, shared a symptomless response. This is troubling, because rootstocks can constitute a silent reservoir of contamination in mother plants or when they grow wild nearby vineyards. Altogether, data suggest distribution of genetic traits within the Vitis genus involved in insect-mediated phytoplasma transmission, multiplication, circulation, and symptom development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...