Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5704, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459080

RESUMO

Line waves (LWs) refer to confined edge modes that propagate along the interface of dual electromagnetic metasurfaces while maintaining mirror reflection symmetries. Previous research has both theoretically and experimentally investigated these waves, revealing their presence in the microwave and terahertz frequency ranges. In addition, a comprehensive exploration has been conducted on the implementation of non-Hermitian LWs by establishing the parity-time symmetry. This study introduces a cutting-edge dual-band line-wave waveguide, enabling the realization of LWs within the terahertz and infrared spectrums. Our work is centered around analyzing the functionalities of existing applications of LWs within a specific field. In addition, a novel non-Hermitian platform is proposed. We address feasible practical implementations of non-Hermitian LWs by placing a graphene-based metasurface on an epsilon-near-zero material. This study delves into the advantages of the proposed framework compared to previously examined structures, involving both analytical and numerical examinations of how these waves propagate and the underlying physical mechanisms.

2.
Opt Express ; 31(18): 29504-29514, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710749

RESUMO

Subwavelength resonant lattices provide a host of interesting spectral expressions on broadside illumination. The resonance mechanism is based on generation of lateral Bloch modes phase matched to evanescent diffraction orders. The leaky mode structure and mode count determine the spectra and the number of resonance states. Here, we study band flips and bound-state transitions in guided-mode resonant structures supporting multiple resonant modes. We present theoretical simulations and experimental results for a subwavelength silicon-nitride lattice integrated with a liquid film with adjustable boundary. The relatively thick liquid waveguiding region supports additional modes such that the first four transverse-electric (TE) leaky modes are present and generate observable resonance signatures. By varying the duty cycle of the basic lattice in experiment, the 4 bands undergo band transitions and band closures as quantified herein. The experimental results taken in the 1400-1600 nm spectral region agree reasonably well with numerical analysis.

3.
Nanomaterials (Basel) ; 13(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630935

RESUMO

Subwavelength resonant lattices offer a wide range of fascinating spectral phenomena under broadside illumination. The resonance mechanism relies on the generation of lateral Bloch modes that are phase matched to evanescent diffraction orders. The spectral properties and the total number of resonance states are governed by the structure of leaky modes and the mode count. This study investigates the effect of interface modifications on the band dynamics and bound-state transitions in guided-mode resonant lattices. We provide photonic lattices comprising rectangular Si3N4 rods with a liquid film with an adjustable boundary. The band structures and band flips are examined through numerical simulations using the rigorous coupled-wave analysis (RCWA) method and analyzing the zero-order spectral reflectance as a function of the incident angle. The band structures and band flips are examined through numerical simulations, and the influences of the refractive index and the thickness of the oil layer on the band dynamics are investigated. The results reveal distinct resonance linewidths corresponding to different refractive indices of the oil layer. Furthermore, the effect of the oil thickness on the band dynamics is explored, demonstrating precise control over the number of propagating modes within the lattice structure. Theoretical simulations and experimental results are presented for a subwavelength silicon-nitride lattice combined with a liquid film featuring an adjustable boundary. The presence of a relatively thick liquid waveguiding region enables the emergence of additional modes, including the first four transverse-electric (TE) leaky modes, which produce observable resonance signatures. Through experimental manipulation of the basic lattice's duty cycle, the four bands undergo quantifiable band transitions and closures. The experimental results obtained within the 1400-1600 nm spectral range exhibit reasonable agreement with the numerical analysis. These findings underscore the significant role played by the interface in shaping the band dynamics of the lattice structure, providing valuable insights into the design and optimization of photonic lattices with adjustable interfaces.

4.
Opt Lett ; 47(13): 3363-3366, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776625

RESUMO

We demonstrate band flip in one-dimensional dielectric photonic lattices presenting numerical and experimental results. In periodic optical lattices supporting leaky Bloch modes, there exists a second stop band where one band edge experiences radiation loss resulting in guided-mode resonance (GMR), while the other band edge becomes a nonleaky bound state in the continuum (BIC). To illustrate the band flip, band structures for two different lattices are provided by calculating zero-order reflectance with respect to wavelength and incident angle. We then provide three photonic lattices, each with a different fill factor, consisting of photoresist gratings on Si3N4 sublayers with glass substrates. The designs are fabricated using laser interferometric lithography. The lattice parameters are characterized and verified with an atomic force microscope. The band transition under fill-factor variation is accomplished experimentally. The measured data are compared to simulation results and show good agreement.

5.
Opt Express ; 29(17): 26971-26982, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615120

RESUMO

Resonant periodic nanostructures provide perfect reflection across small or large spectral bandwidths depending on the choice of materials and design parameters. This effect has been known for decades, observed theoretically and experimentally via one-dimensional and two-dimensional structures commonly known as resonant gratings, metamaterials, and metasurfaces. The physical cause of this extraordinary phenomenon is guided-mode resonance mediated by lateral Bloch modes excited by evanescent diffraction orders in the subwavelength regime. In recent years, hundreds of papers have declared Fabry-Perot or Mie resonance to be the basis of the perfect reflection possessed by periodic metasurfaces. Treating a simple one-dimensional cylindrical-rod lattice, here we show clearly and unambiguously that Mie resonance does not cause perfect reflection. In fact, the spectral placement of the Bloch-mode-mediated zero-order reflectance is primarily controlled by the lattice period by way of its direct effect on the homogenized effective-medium refractive index of the lattice. In general, perfect reflection appears away from Mie resonance. However, when the lateral leaky-mode field profiles approach the isolated-particle Mie field profiles, the resonance locus tends towards the Mie resonance wavelength. The fact that the lattice fields "remember" the isolated particle fields is referred here as "Mie modal memory." On erasure of the Mie memory by an index-matched sublayer, we show that perfect reflection survives with the resonance locus approaching the homogenized effective-medium waveguide locus. The results presented here will aid in clarifying the physical basis of general resonant photonic lattices.

6.
Opt Express ; 29(12): 19183-19192, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154159

RESUMO

Periodic guided-mode resonance structures which provide perfect reflection across sizeable spectral bandwidths have been known for decades and are now often referred to as metasurfaces and metamaterials. Although the underlying physics for these devices is explained by evanescent-wave excitation of leaky Bloch modes, a growing body of literature contends that local particle resonance is causative in perfect reflection. Here, we address differentiation of Mie resonance and guided-mode resonance in mediating resonant reflection by periodic particle assemblies. We treat a classic 2D periodic array consisting of silicon spheres. To disable Mie resonance, we apply an optimal antireflection (AR) coating to the spheres. Reflectance maps for coated and uncoated spheres demonstrate that perfect reflection persists in both cases. It is shown that the Mie scattering efficiency of an AR-coated sphere is greatly diminished. The reflectance properties of AR-coated spherical arrays have not appeared in the literature previously. From this viewpoint, these results illustrate high-efficiency resonance reflection in Mie-resonance-quenched particle arrays and may help dispel misconceptions of the basic operational physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...