Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Metab Insights ; 16: 11786388231160317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484523

RESUMO

Background: Sleep quality is defined as an individual's consent to sleep experience. Poor sleep quality has important adverse health outcomes. There are drugs to treat sleep disorders but consumption of these drugs is accompanied by adverse effects whereas herbal treatments have fewer side effects. Saffron is spice obtained from Crocus sativus flower. Several articles have been done on its effects on the quality of sleep and its safety. This review for the first time critically evaluates effect of saffron on sleep quality improvement. Method: The search technique aims to get all related published data-based up to 2022 articles. PubMed, Central, Google Scholar, and Scopus were examined. Only full reports were evaluated (abstracts were excluded). The first screening was done by title and abstract. Then full text of articles was read and irrelevant articles were removed. Duplicate articles were also removed by Endnote. By using Cochrane risk of bias tool assessment, a quality score based on probability of bias was given. Methodological characteristics were also evaluated using the criteria of Stevinson and Ernst. Result: In the systematic review, 5 randomized clinical trials with 379 participants from 3 countries were identified. In placebo-comparison trials, saffron contains a large treatment. Conclusion: It seems that saffron has a beneficial influence on duration and quality of sleep. Saffron, crocin, and safranal induce hypnotic effects by increasing the duration of sleep. Research conducted so far provides initial support and safety for use of saffron to improve sleep quality.

2.
Front Neurol ; 13: 944791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247795

RESUMO

Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1ß)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...