Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 9(1): 159, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937432

RESUMO

The ORF9b protein, derived from the nucleocapsid's open-reading frame in both SARS-CoV and SARS-CoV-2, serves as an accessory protein crucial for viral immune evasion by inhibiting the innate immune response. Despite its significance, the precise regulatory mechanisms underlying its function remain elusive. In the present study, we unveil that the ORF9b protein of SARS-CoV-2, including emerging mutant strains like Delta and Omicron, can undergo ubiquitination at the K67 site and subsequent degradation via the proteasome pathway, despite certain mutations present among these strains. Moreover, our investigation further uncovers the pivotal role of the translocase of the outer mitochondrial membrane 70 (TOM70) as a substrate receptor, bridging ORF9b with heat shock protein 90 alpha (HSP90α) and Cullin 5 (CUL5) to form a complex. Within this complex, CUL5 triggers the ubiquitination and degradation of ORF9b, acting as a host antiviral factor, while HSP90α functions to stabilize it. Notably, treatment with HSP90 inhibitors such as GA or 17-AAG accelerates the degradation of ORF9b, leading to a pronounced inhibition of SARS-CoV-2 replication. Single-cell sequencing data revealed an up-regulation of HSP90α in lung epithelial cells from COVID-19 patients, suggesting a potential mechanism by which SARS-CoV-2 may exploit HSP90α to evade the host immunity. Our study identifies the CUL5-TOM70-HSP90α complex as a critical regulator of ORF9b protein stability, shedding light on the intricate host-virus immune response dynamics and offering promising avenues for drug development against SARS-CoV-2 in clinical settings.


Assuntos
COVID-19 , Proteínas Culina , Proteínas de Choque Térmico HSP90 , SARS-CoV-2 , Ubiquitinação , Replicação Viral , Humanos , Proteínas Culina/genética , Proteínas Culina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , COVID-19/virologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/imunologia , Ubiquitinação/genética , Células HEK293 , Benzoquinonas/farmacologia , Estabilidade Proteica , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Lactamas Macrocíclicas
2.
Rev Med Virol ; 34(1): e2500, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38126937

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously producing new variants, necessitating effective therapeutics. Patients are not only confronted by the immediate symptoms of infection but also by the long-term health issues linked to long COVID-19. Activation of epidermal growth factor receptor (EGFR) signalling during SARS-CoV-2 infection promotes virus propagation, mucus hyperproduction, and pulmonary fibrosis, and suppresses the host's antiviral response. Over the long term, EGFR activation in COVID-19, particularly in COVID-19-induced pulmonary fibrosis, may be linked to the development of lung cancer. In this review, we have summarised the significance of EGFR signalling in the context of SARS-CoV-2 infection. We also discussed the targeting of EGFR signalling as a promising strategy for COVID-19 treatment and highlighted erlotinib as a superior option among EGFR inhibitors. Erlotinib effectively blocks EGFR and AAK1, thereby preventing SARS-CoV-2 replication, reducing mucus hyperproduction, TNF-α expression, and enhancing the host's antiviral response. Nevertheless, to evaluate the antiviral efficacy of erlotinib, relevant clinical trials involving an appropriate patient population should be designed.


Assuntos
COVID-19 , Receptores ErbB , Transdução de Sinais , Humanos , Antivirais/uso terapêutico , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Síndrome de COVID-19 Pós-Aguda , Fibrose Pulmonar/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
J Virol ; 96(17): e0074122, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35980206

RESUMO

Within the past 2 decades, three highly pathogenic human coronaviruses have emerged, namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The health threats and economic burden posed by these tremendously severe coronaviruses have paved the way for research on their etiology, pathogenesis, and treatment. Compared to SARS-CoV and SARS-CoV-2, MERS-CoV genome encoded fewer accessory proteins, among which the ORF4b protein had anti-immunity ability in both the cytoplasm and nucleus. Our work for the first time revealed that ORF4b protein was unstable in the host cells and could be degraded by the ubiquitin proteasome system. After extensive screenings, it was found that UBR5 (ubiquitin protein ligase E3 component N-recognin 5), a member of the HECT E3 ubiquitin ligases, specifically regulated the ubiquitination and degradation of ORF4b. Similar to ORF4b, UBR5 can also translocate into the nucleus through its nuclear localization signal, enabling it to regulate ORF4b stability in both the cytoplasm and nucleus. Through further experiments, lysine 36 was identified as the ubiquitination site on the ORF4b protein, and this residue was highly conserved in various MERS-CoV strains isolated from different regions. When UBR5 was knocked down, the ability of ORF4b to suppress innate immunity was enhanced and MERS-CoV replication was stronger. As an anti-MERS-CoV host protein, UBR5 targets and degrades ORF4b protein through the ubiquitin proteasome system, thereby attenuating the anti-immunity ability of ORF4b and ultimately inhibiting MERS-CoV immune escape, which is a novel antagonistic mechanism of the host against MERS-CoV infection. IMPORTANCE ORF4b was an accessory protein unique to MERS-CoV and was not present in SARS-CoV and SARS-CoV-2 which can also cause severe respiratory disease. Moreover, ORF4b inhibited the production of antiviral cytokines in both the cytoplasm and the nucleus, which was likely to be associated with the high lethality of MERS-CoV. However, whether the host proteins regulate the function of ORF4b is unknown. Our study first determined that UBR5, a host E3 ligase, was a potential host anti-MERS-CoV protein that could reduce the protein level of ORF4b and diminish its anti-immunity ability by inducing ubiquitination and degradation. Based on the discovery of ORF4b-UBR5, a critical molecular target, further increasing the degradation of ORF4b caused by UBR5 could provide a new strategy for the clinical development of drugs for MERS-CoV.


Assuntos
Infecções por Coronavirus , Interações entre Hospedeiro e Microrganismos , Coronavírus da Síndrome Respiratória do Oriente Médio , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Virais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Citocinas/imunologia , Humanos , Imunidade Inata , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Terapia de Alvo Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2 , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
4.
Mol Cancer ; 21(1): 109, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524319

RESUMO

BACKGROUND: Emerging evidence suggest the critical role of circular RNAs (circRNAs) in disease development especially in various cancers. However, the oncogenic role of circRNAs in hepatocellular carcinoma (HCC) is still largely unknown. METHODS: RNA sequencing was performed to identify significantly upregulated circRNAs in paired HCC tissues and non-tumor tissues. CCK-8 assay, colony formation, transwell, and xenograft mouse models were used to investigate the role of circRNAs in HCC proliferation and metastasis. Small interfering RNA (siRNA) was used to silence gene expression. RNA immunoprecipitation, biotin pull-down, RNA pull-down, luciferase reporter assay and western blot were used to explore the underlying molecular mechanisms. RESULTS: Hsa_circ_0095868, derived from exon 5 of the MDK gene (named circMDK), was identified as a new oncogenic circRNA that was significantly upregulated in HCC. The upregulation of circMDK was associated with the modification of N6-methyladenosine (m6A) and poor survival in HCC patients. Mechanistically, circMDK sponged miR-346 and miR-874-3p to upregulate ATG16L1 (Autophagy Related 16 Like 1), resulting to the activation of PI3K/AKT/mTOR signaling pathway to promote cell proliferation, migration and invasion. Poly (ß-amino esters) (PAEs) were synthesized to assist the delivery of circMDK siRNA (PAE-siRNA), which effectively inhibited tumor progression without obvious adverse effects in four liver tumor models including subcutaneous, metastatic, orthotopic and patient-derived xenograft (PDX) models. CONCLUSIONS: CircMDK could serve as a potential tumor biomarker that promotes the progression of HCC via the miR-346/874-3p-ATG16L1 axis. The PAE-based delivery of siRNA improved the stability and efficiency of siRNA targeting circMDK. The PAE-siRNA nanoparticles effectively inhibited HCC proliferation and metastasis in vivo. Our current findings offer a promising nanotherapeutic strategy for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética , RNA Interferente Pequeno , Regulação para Cima
5.
J Biol Chem ; 298(2): 101584, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032548

RESUMO

With the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), coronaviruses have begun to attract great attention across the world. Of the known human coronaviruses, however, Middle East respiratory syndrome coronavirus (MERS-CoV) is the most lethal. Coronavirus proteins can be divided into three groups: nonstructural proteins, structural proteins, and accessory proteins. While the number of each of these proteins varies greatly among different coronaviruses, accessory proteins are most closely related to the pathogenicity of the virus. We found for the first time that the ORF3 accessory protein of MERS-CoV, which closely resembles the ORF3a proteins of severe acute respiratory syndrome coronavirus and SARS-CoV-2, has the ability to induce apoptosis in cells in a dose-dependent manner. Through bioinformatics analysis and validation, we revealed that ORF3 is an unstable protein and has a shorter half-life in cells compared to that of severe acute respiratory syndrome coronavirus and SARS-CoV-2 ORF3a proteins. After screening, we identified a host E3 ligase, HUWE1, that specifically induces MERS-CoV ORF3 protein ubiquitination and degradation through the ubiquitin-proteasome system. This results in the diminished ability of ORF3 to induce apoptosis, which might partially explain the lower spread of MERS-CoV compared to other coronaviruses. In summary, this study reveals a pathological function of MERS-CoV ORF3 protein and identifies a potential host antiviral protein, HUWE1, with an ability to antagonize MERS-CoV pathogenesis by inducing ORF3 degradation, thus enriching our knowledge of the pathogenesis of MERS-CoV and suggesting new targets and strategies for clinical development of drugs for MERS-CoV treatment.


Assuntos
Apoptose , Infecções por Coronavirus/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Células A549 , Linhagem Celular , Biologia Computacional , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Células Epiteliais/fisiologia , Células Epiteliais/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos
6.
Front Microbiol ; 12: 712081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707577

RESUMO

COVID-19 is mainly associated with respiratory distress syndrome, but a subset of patients often present gastrointestinal (GI) symptoms. Imbalances of gut microbiota have been previously linked to respiratory virus infection. Understanding how the gut-lung axis affects the progression of COVID-19 can provide a novel framework for therapies and management. In this study, we examined the gut microbiota of patients with COVID-19 (n = 47) and compared it to healthy controls (n = 19). Using shotgun metagenomic sequencing, we have identified four microorganisms unique in COVID-19 patients, namely Streptococcus thermophilus, Bacteroides oleiciplenus, Fusobacterium ulcerans, and Prevotella bivia. The abundances of Bacteroides stercoris, B. vulgatus, B. massiliensis, Bifidobacterium longum, Streptococcus thermophilus, Lachnospiraceae bacterium 5163FAA, Prevotella bivia, Erysipelotrichaceae bacterium 6145, and Erysipelotrichaceae bacterium 2244A were enriched in COVID-19 patients, whereas the abundances of Clostridium nexile, Streptococcus salivarius, Coprococcus catus, Eubacterium hallii, Enterobacter aerogenes, and Adlercreutzia equolifaciens were decreased (p < 0.05). The relative abundance of butyrate-producing Roseburia inulinivorans is evidently depleted in COVID-19 patients, while the relative abundances of Paraprevotella sp. and the probiotic Streptococcus thermophilus were increased. We further identified 30 KEGG orthology (KO) modules overrepresented, with 7 increasing and 23 decreasing modules. Notably, 15 optimal microbial markers were identified using the random forest model to have strong diagnostic potential in distinguishing COVID-19. Based on Spearman's correlation, eight species were associated with eight clinical indices. Moreover, the increased abundance of Bacteroidetes and decreased abundance of Firmicutes were also found across clinical types of COVID-19. Our findings suggest that the alterations of gut microbiota in patients with COVID-19 may influence disease severity. Our COVID-19 classifier, which was cross-regionally verified, provides a proof of concept that a set of microbial species markers can distinguish the presence of COVID-19.

7.
Int J Biol Macromol ; 176: 1-12, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548314

RESUMO

SARS-CoV-2 is the etiological agent responsible for the ongoing pandemic of coronavirus disease 2019 (COVID-19). The main protease of SARS-CoV-2, 3CLpro, is an attractive target for antiviral inhibitors due to its indispensable role in viral replication and gene expression of viral proteins. The search of compounds that can effectively inhibit the crucial activity of 3CLpro, which results to interference of the virus life cycle, is now widely pursued. Here, we report that epigallocatechin-3-gallate (EGCG), an active ingredient of Chinese herbal medicine (CHM), is a potent inhibitor of 3CLpro with half-maximum inhibitory concentration (IC50) of 0.874 ± 0.005 µM. In the study, we retrospectively analyzed the clinical data of 123 cases of COVID-19 patients, and found three effective Traditional Chinese Medicines (TCM) prescriptions. Multiple strategies were performed to screen potent inhibitors of SARS-CoV-2 3CLpro from the active ingredients of TCMs, including network pharmacology, molecular docking, surface plasmon resonance (SPR) binding assay and fluorescence resonance energy transfer (FRET)-based inhibition assay. The SPR assay showed good interaction between EGCG and 3CLpro with KD ~6.17 µM, suggesting a relatively high affinity of EGCG with SARS-CoV-2 3CLpro. Our results provide critical insights into the mechanism of action of EGCG as a potential therapeutic agent against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Catequina/análogos & derivados , Proteases 3C de Coronavírus/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Adulto , Antivirais/administração & dosagem , Antivirais/farmacologia , COVID-19/epidemiologia , COVID-19/metabolismo , COVID-19/virologia , Catequina/administração & dosagem , Catequina/farmacologia , China/epidemiologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Feminino , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Masculino , Medicina Tradicional Chinesa/métodos , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular/métodos , Pandemias , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/farmacologia , Estudos Retrospectivos , Replicação Viral/efeitos dos fármacos , Adulto Jovem
8.
Rev Med Virol ; 31(2): e2168, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-35349206

RESUMO

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally to over 200 countries with more than 23 million confirmed cases and at least 800,000 fatalities as of 23 August 2020. Declared a pandemic on March 11 by World Health Organization, the disease caused by SARS-CoV-2 infection, called coronavirus disease 2019 (COVID-19), has become a global public health crisis that challenged all national healthcare systems. This review summarized the current knowledge about virologic and pathogenic characteristics of SARS-CoV-2 with emphasis on potential immunomodulatory mechanism and drug development. With multiple emerging technologies and cross-disciplinary approaches proving to be crucial in our global response against COVID-19, the application of PROteolysis TArgeting Chimeras strategy, CRISPR-Cas9 gene editing technology, and Single-Nucleotide-Specific Programmable Riboregulators technology in developing antiviral drugs and detecting infectious diseases are proposed here. We also discussed the available but still limited epidemiology of COVID-19 as well as the ongoing efforts on vaccine development. In brief, we conducted an in-depth analysis of the pathogenesis of SARS-CoV-2 and reviewed the therapeutic options for COVID-19. We also proposed key research directions in the future that may help uncover more underlying molecular mechanisms governing the pathology of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/uso terapêutico , Humanos , Pandemias , Saúde Pública , SARS-CoV-2/genética
9.
Food Sci Nutr ; 8(8): 4009-4016, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884682

RESUMO

Peripheral nerve injury (PNI) is an incapacitating situation and has no effective therapy until now. We examined the possible role of crude leaves of Moringa oleifera Lam. at 200 mg/kg body weight in accelerating the functional regain in the sciatic nerve lesion induced mouse model (Adult male albino mice (BALB/c). Motor functions were evaluated by using the sciatic functional index, muscle mass, and muscle grip strength measurement, whereas the sensory functions were evaluated by using the hot plate test. Blood glucose levels and blood cell composition were also analyzed. We found that the Moringa oleifera crude leaves endorse the sensory and motor functions reclamation following the PNI with a statistically significant difference (p < .05). It also revitalizes the gastrocnemius muscle by mass restoration with glycemic management perspective. Conclusively, the crude powder of Moringa oleifera leaves exhibited a function restoration boosting property and further detailed studies for its application as a therapeutic agent are strongly recommended.

10.
BMC Complement Med Ther ; 20(1): 181, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527244

RESUMO

BACKGROUND: Peripheral nerve injury is a debilitating condition that may lead to partial or complete motor, sensory and autonomic function loss and lacks effective therapy until date. Therefore, it is quite imperative to explore impending remedies for rapid and accurate functional retrieval following such conditions. Natural product-based intervention can prove effective to facilitate the process of functions regain. METHODS: Here, we investigated the effect of processed Strychnos nux-vomica seeds at a dose of 250 mg/kg body weight in a mouse model of induced Sciatic nerve lesion in promoting the recovery of the functions. A compression injury was induced in the Sciatic nerve of the right leg in the mice. Sensory function recovery was evaluated by hot-plate and formalin tests, whereas the motor function retrieval was assessed by measuring muscle grip strength, sciatic functional index, and muscle mass restoration. Oxidative stress and blood cell count were measured by biochemistry and haematological analyses. RESULTS: This study indicates that Strychnos nux-vomica seeds enhance the rate of recovery of both sensory and motor functions. It helps restore the muscle mass, attenuates total oxidant status and enhances the total anti-oxidant capacity of the biological system. Moreover, the treated animals manifested an enhanced glucose tolerance aptitude and augmented granulocyte and platelet counts. Improved oxidant control, enhanced glucose sensitivity and amended granulocyte and platelet counts are likely to contribute to the advantageous effects of Strychnos nux-vomica, and warrant further in-depth studies for deciphering possible mechanisms and identification of active constituent(s) responsible for these effects. CONCLUSION: Strychnos nux-vomica seed offers functional recovery promoting effects following a mechanical injury to the Sciatic nerve and the possible reasons behind this effect can be reduced oxidative stress and improved glycaemic control. Further and detailed investigations can unravel this mystery.


Assuntos
Lesões por Esmagamento/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Preparações de Plantas/uso terapêutico , Neuropatia Ciática/tratamento farmacológico , Strychnos nux-vomica/química , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Recuperação de Função Fisiológica , Sementes/química
11.
Int J Biol Sci ; 16(1): 116-134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31892850

RESUMO

Peripheral nerve injury is a complex condition with a variety of signs and symptoms such as numbness, tingling, jabbing, throbbing, burning or sharp pain. Peripheral nerves are fragile in nature and can easily get damaged due to acute compression or trauma which may lead to the sensory and motor functions deficits and even lifelong disability. After lesion, the neuronal cell body becomes disconnected from the axon's distal portion to the injury site leading to the axonal degeneration and dismantlement of neuromuscular junctions of targeted muscles. In spite of extensive research on this aspect, complete functional recovery still remains a challenge to be resolved. This review highlights detailed pathophysiological events after an injury to a peripheral nerve and the associated factors that can either hinder or promote the regenerative machinery. In addition, it throws light on the available therapeutic strategies including supporting therapies, surgical and non-surgical interventions to ameliorate the axonal regeneration, neuronal survival, and reinnervation of peripheral targets. Despite the availability of various treatment options, we are still lacking the optimal treatments for a perfect and complete functional regain. The need for the present age is to discover or design such potent compounds that would be able to execute the complete functional retrieval. In this regard, plant-derived compounds are getting more attention and several recent reports validate their remedial effects. A plethora of plants and plant-derived phytochemicals have been suggested with curative effects against a number of diseases in general and neuronal injury in particular. They can be a ray of hope for the suffering individuals.


Assuntos
Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Nervos Periféricos/metabolismo , Nervos Periféricos/fisiopatologia , Animais , Humanos , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/genética , Recuperação de Função Fisiológica/fisiologia
12.
Crit Rev Food Sci Nutr ; 60(3): 351-374, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30614244

RESUMO

Brain is a central and pivotal organ of human body containing the highest lipids content next to adipose tissue. It works as a monitor for the whole body and needs an adequate supply of energy to maintain its physiological activities. This high demand of energy in the brain is chiefly maintained by the lipids along with its reservoirs. Thus, the lipid metabolism is also an important for the proper development and function of the brain. Being a prominent part of the brain, lipids play a vast number of physiological activities within the brain starting from the structural development, impulse conduction, insulation, neurogenesis, synaptogenesis, myelin sheath formation and finally to act as the signaling molecules. Interestingly, lipids bilayer also maintains the structural integrity for the physiological functions of protein. Thus, in light to all of these activities, lipids and its metabolism can be attributed pivotal for brain health and its activities. Decisively, the impaired/altered metabolism of lipids and its intermediates puts forward a key step in the progression of different brain ailments including neurodegenerative, neurological and neuropsychiatry disorders. Depending on their associated underlying pathways, they serve as the potential biomarkers of these disorders and are considered as necessary diagnostic tools. The present review discusses the role and level of altered lipids metabolism in brain diseases including neurodegenerative diseases, neurological diseases, and neuropsychiatric diseases. Moreover, the possible mechanisms of altered level of lipids and their metabolites have also been discussed in detail.


Assuntos
Encefalopatias/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Biomarcadores/análise , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/patologia , Humanos
13.
Pak J Pharm Sci ; 32(4(Supplementary)): 1761-1766, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31680070

RESUMO

Peripheral nerve injury is a complex condition which results in restricted physical activity. Despite the tremendous efforts to figure out effective remedies, the complete functional retrieval is still a goal to be achieved. So, the need of hour is the exploration of potential natural compounds to recover this functional loss. Here, we have investigated the role of a local plant "Neurada procumbens" in ameliorating the functional recovery after an induced nerve compression injury in a mouse model. A dose of N. procumbens (50mg/kg of body weight) was administered orally from the day of injury to onwards. The motor functional recovery was assessed by evaluating muscle grip strength and sciatic functional index; while the sensory functions were gauged by the hotplate test. The serological parameters were carried out to analyze the effect of N. procumbens on oxidative stress level. The recovery of sensory and motor functions was significantly improved and perceived earlier in the treatment group. Moreover, the elevated antioxidant level was statistically significant in the treatment group. These results indicate that the supplementation of N. procumbens accelerates functional recovery after sciatic nerve crush injury.


Assuntos
Traumatismos dos Nervos Periféricos/tratamento farmacológico , Preparações de Plantas/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Camundongos , Atividade Motora/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
14.
J Food Biochem ; 43(9): e12983, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31489666

RESUMO

Peripheral nerve injury is one of the major health concerns of the present era which can lead to the long-lasting disability and even demise. Currently, no effective and side effect free remedy exists and exploration of effective therapeutic strategies to regain functional outcome is a need of hour. In the present study, we used BALB/c mice (N = 14 age, 10-12 weeks & weight 32-34 g) that were divided into two groups: Normal chow (n = 7) and Fennel chow (n = 7) group. Here, we have explored the role of crude Foeniculum vulgare mill seeds in promoting functional recovery following a mechanical insult to the sciatic nerve by an oral administration of a crude dose of 500 mg/kg BW. The recovery of both sensory and motor functions was significantly (p > .05) accelerated in the treatment group, assessed by behavioral analyses alongside total antioxidant capacity increase. Conclusively, F. vulgare can be a potential therapeutic candidate for accelerating functional recovery after peripheral nerve injury. PRACTICAL APPLICATIONS: The outcomes of study have vital practical application both for scientists and consumers. The therapeutic role of phytochemicals on functional recovery has not been explored yet. This study will help figure out plant based regimen as booster for brain health and intervention against traumatic nerve injuries. Moreover, it may also attract the food and pharmaceutical industries to formulate cost effective therapeutic products. Likewise, it can prove instrumental for scientists for advance research on this aspect with more mechanistic targets.


Assuntos
Foeniculum , Estresse Oxidativo , Neuropatia Ciática/tratamento farmacológico , Ração Animal , Animais , Peso Corporal , Dieta , Suplementos Nutricionais , Ingestão de Alimentos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
15.
Molecules ; 24(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200495

RESUMO

Neurodegenerative and neuropsychiatric diseases are characterized by the structural and functional abnormalities of neurons in certain regions of the brain. These abnormalities, which can result in progressive neuronal degeneration and functional disability, are incurable to date. Although comprehensive efforts have been made to figure out effective therapies against these diseases, partial success has been achieved and complete functional recovery is still not a reality. At present, plants and plant-derived compounds are getting more attention because of a plethora of pharmacological properties, and they are proving to be a better and safer target as therapeutic interventions. This review aims to highlight the roles of tannins, 'the polyphenol phytochemicals', in tackling neurodegenerative diseases including Alzheimer's and Parkinson's diseases as well as neuropsychiatric disorders like depression. Among the multifarious pharmacological properties of tannins, anti-oxidative, anti-inflammatory, and anti-cholinesterase activities are emphasized more in terms of neuroprotection. The current review also throws light on mechanistic pathways by which various classes of tannins execute neuroprotective effects. Despite their beneficial properties, some harmful effects of tannins have also been elaborated.


Assuntos
Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Taninos/química , Taninos/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Humanos , Neuropsiquiatria , Doença de Parkinson/tratamento farmacológico , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico
16.
Pak J Pharm Sci ; 32(2 (Supplementary)): 785-792, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31103973

RESUMO

Peripheral nerve injury is a common condition with a multitude of signs and symptoms. The major consequence of injury is limited physical activity. Presently, we are lacking effective therapies for PNI and it is need of the hour is to explore potential remedies for the recovery of functional loss. Here, we have investigated the role of crude Cannabis sativa L. leaf powder in promoting functions recovery, in mouse model subjected to a traumatic sciatic nerve injury. A dose of 200mg/kg of the body weight per day was administered orally from the day of nerve crush till the end of the experiment. The motor functions were evaluated by measuring sciatic functional index, muscle grip strength and muscle mass; whereas the sensory functions were assessed by hotplate test. The haematology and serum analyses were carried out to estimate the effect of treatment on the systemic index and oxidative stress. The gain of motor functions was significantly improved and was early noticed in the treated mice. Restoration of muscle mass and elevated haemoglobin level were statistically significant in the treatment group. This study indicates that Cannabis sativa L. supplementation accelerates the motor functions recovery after nerve compression injury.


Assuntos
Cannabis , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Nervo Isquiático/lesões , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Hemoglobinas/metabolismo , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/sangue , Traumatismos dos Nervos Periféricos/fisiopatologia , Folhas de Planta/química , Pós/farmacologia , Recuperação de Função Fisiológica
17.
Lipids Health Dis ; 18(1): 26, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683111

RESUMO

Brain is a vital organ of the human body which performs very important functions such as analysis, processing, coordination, and execution of electrical signals. For this purpose, it depends on a complex network of nerves which are ensheathed in lipids tailored myelin; an abundant source of lipids in the body. The nervous system is enriched with important classes of lipids; sphingolipids and cholesterol which compose the major portion of the brain particularly in the form of myelin. Both cholesterol and sphingolipids are embedded in the microdomains of membrane rafts and are functional units of the neuronal cell membrane. These molecules serve as the signaling molecules; hold important roles in the neuronal differentiation, synaptogenesis, and many others. Thus, their adequate provision and active metabolism are of crucial importance in the maintenance of physiological functions of brain and body of an individual. In the present review, we have highlighted the physiological roles of cholesterol and sphingolipids in the development of the nervous system as well as the association of their altered metabolism to neurological and neurodegenerative diseases.


Assuntos
Encéfalo/crescimento & desenvolvimento , Colesterol/metabolismo , Doenças do Sistema Nervoso/genética , Esfingolipídeos/metabolismo , Animais , Encéfalo/metabolismo , Membrana Celular/genética , Colesterol/genética , Humanos , Lipídeos/genética , Microdomínios da Membrana/genética , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Esfingolipídeos/genética
18.
Molecules ; 23(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614843

RESUMO

Neurodegeneration is a progressive loss of neuronal cells in certain regions of the brain. Most of the neurodegenerative disorders (NDDs) share the communal characteristic such as damage or reduction of various cell types typically including astrocytes and microglial activity. Several compounds are being trialed to treat NDDs but they possess solitary symptomatic advantages along with copious side effects. The finding of more enthralling and captivating compounds to suspend and standstill the pathology of NDDs will be considered as a hallmark of present times. Phytochemicals possess the potential to alternate the synthetic line of therapy against NDDs. The present review explores the potential efficacy of plant-derived flavonoids against most common NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). Flavonoids are biologically active phytochemicals which possess potential pharmacological effects, including antiviral, anti-allergic, antiplatelet, anti-inflammatory, anti-tumor, anti-apoptotic and anti-oxidant effects and are able to attenuate the pathology of various NDDs through down-regulating the nitric oxide (NO) production, by reducing the tumor necrosis factor-α (TNF-α), by reducing the excitotoxicity of superoxide as well as acting as tyrosine kinase (TK) and monoamine oxidase (MAO) inhibiting enzyme.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Flavonoides/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/uso terapêutico , Humanos , Monoaminoxidase/metabolismo , Doença de Parkinson/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Int J Biol Sci ; 14(3): 341-357, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559851

RESUMO

Neurodegenerative diseases are conventionally demarcated as disorders with selective loss of neurons. Conventional as well as newer molecules have been tested but they offer just symptomatic advantages along with abundant side effects. The discovery of more compelling molecules that can halt the pathology of these diseases will be considered as a miracle of present time. Several synthetic compounds are available but they may cause several other health issues. Therefore, natural molecules from the plants and other sources are being discovered to replace available medicines. In conventional medicational therapies, several plants have been reported to bestow remedial effects. Phytochemicals from medicinal plants can provide a better and safer alternative to synthetic molecules. Many phytochemicals have been identified that cure the human body from a number of diseases. The present article reviews the potential efficacy of plant-derived alkaloids, which possess potential therapeutic effects against several NDDs including Alzheimer's disease (AD), Huntington disease (HD), Parkinson's disease (PD), Epilepsy, Schizophrenia, and stroke. Alkaloids include isoquinoline, indole, pyrroloindole, oxindole, piperidine, pyridine, aporphine, vinca, ß-carboline, methylxanthene, lycopodium, and erythrine byproducts. Alkaloids constitute positive roles in ameliorating pathophysiology of these illnesses by functioning as muscarinic and adenosine receptors agonists, anti-oxidant, anti-amyloid and MAO inhibitors, acetylcholinestrase and butyrylcholinesterase inhibitor, inhibitor of α-synuclein aggregation, dopaminergic and nicotine agonist, and NMDA antagonist.


Assuntos
Alcaloides/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...