Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Oncol ; 14: 1348118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800378

RESUMO

Objectives: Bisphosphonates (BFs) show clinical effectiveness in managing osteoporosis and bone metastases but pose risks of bisphosphonate-related jaw osteonecrosis (BRONJ). With no established gold standard for BRONJ treatment, our focus is on symptom severity reduction. We aimed to assess the preventive effects of bioactive glass and/or pericardial membrane in a preclinical BRONJ model, evaluating their potential to prevent osteonecrosis and bone loss post-tooth extractions in zoledronic acid (ZA)-treated animals. Methods: Rats, receiving ZA or saline biweekly for four weeks, underwent 1st and 2nd lower left molar extractions. Pericardial membrane alone or with F18 bioglass was applied post-extractions. Microarchitecture analysis and bone loss assessment utilized computerized microtomography (CT) and positron emission tomography (PET) with 18F-FDG and 18F-NaF tracers. Histological analysis evaluated bone injury. Results: Exclusive alveolar bone loss occurred post-extraction in the continuous ZA group, inducing osteonecrosis, osteolysis, osteomyelitis, and abscess formation. Concurrent pericardial membrane with F18 bioglass application prevented these outcomes. Baseline PET/CT scans showed no discernible uptake differences, but post-extraction 18F-FDG tracer imaging revealed heightened glucose metabolism at the extraction site in the ZA-treated group with membrane, contrasting the control group. Conclusion: These findings suggest pericardial membrane with F18 bioglass effectively prevents BRONJ in the preclinical model.

2.
Acta Neuropsychiatr ; 36(2): 109-117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36847240

RESUMO

OBJECTIVE: Cocaine is a highly addictive psychostimulant that affects synaptic activity with structural and functional adaptations of neurons. The transmembrane synaptic vesicle glycoprotein 2A (SV2A) of pre-synaptic vesicles is commonly used to measure synaptic density, as a novel approach to the detection of synaptic changes. We do not know if a single dose of cocaine suffices to affect pre-synaptic SV2A density, especially during adolescence when synapses undergo intense maturation. Here, we explored potential changes of pre-synaptic SV2A density in target brain areas associated with the cocaine-induced boost of dopaminergic neurotransmission, specifically testing if the effects would last after the return of dopamine levels to baseline. METHODS: We administered cocaine (20 mg/kg i.p.) or saline to rats in early adolescence, tested their activity levels and removed the brains 1 hour and 7 days after injection. To evaluate immediate and lasting effects, we did autoradiography with [3H]UCB-J, a specific tracer for SV2A, in medial prefrontal cortex, striatum, nucleus accumbens, amygdala, and dorsal and ventral areas of hippocampus. We also measured the striatal binding of [3H]GBR-12935 to test cocaine's occupancy of the dopamine transporter at both times of study. RESULTS: We found a significant increase of [3H]UCB-J binding in the dorsal and ventral sections of hippocampus 7 days after the cocaine administration compared to saline-injected rats, but no differences 1 hour after the injection. The [3H]GBR-12935 binding remained unchanged at both times. CONCLUSION: Cocaine provoked lasting changes of hippocampal synaptic SV2A density after a single exposure during adolescence.


Assuntos
Cocaína , Hipocampo , Glicoproteínas de Membrana , Animais , Ratos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Encéfalo/metabolismo , Cocaína/metabolismo , Cocaína/farmacologia , Corpo Estriado , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Tomografia por Emissão de Pósitrons , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo
3.
Neurotoxicology ; 91: 166-176, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569565

RESUMO

The Göttingen minipig is a large animal with a gyrencephalic brain that expresses -complex behavior, making it an attractive model for Parkinson's disease research. Here, we investigate the temporal evolution of presynaptic dopaminergic function for 14 months after injections of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the minipig using a multi-tracer longitudinal positron emission tomography (PET) design. We injected seven sedated minipigs with 1-2 mg/kg of MPTP, and two with saline, three times a week over four weeks. We monitored behavioral deficits using a validated motor scale and walking mat. Brains were imaged with (+)-⍺-[11C]-dihydrotetrabenazine ([11C]-DTBZ) and [18F]-dihydroxyphenylalanine ([18F]-FDOPA) PET at baseline and 1, 3, 10 and 14 months after MPTP injection, and immunohistochemistry was used to assess nigral cell loss. The minipigs showed mild bradykinesia and impaired coordination at early timepoints after MPTP. PET revealed decreases of striatal [11C]-DTBZ and [18F]-FDOPA uptake post-MPTP with partial spontaneous recovery of [18F]-FDOPA after 10 months. Postmortem analysis estimated an MPTP-induced nigral loss of 57% tyrosine hydroxylase+ and 43% Nissl-stained cells. Normal motor function despite substantial damage to the dopaminergic system is consistent with prodromal Parkinson's disease, and offers an opportunity for testing disease-modifying therapies. However, partial spontaneous recovery of dopamine terminal function must be taken into account in future studies.


Assuntos
Dopamina , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Corpo Estriado/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Substância Negra , Suínos , Porco Miniatura
4.
Metabolism ; 117: 154723, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549579

RESUMO

BACKGROUND: Obesity, characterized by excessive expansion of white adipose tissue (WAT), is associated with numerous metabolic complications. Conversely, brown adipose tissue (BAT) and beige fat are thermogenic tissues that protect mice against obesity and related metabolic disorders. We recently reported that deletion of miR-22 enhances energy expenditure and attenuates WAT expansion in response to a high-fat diet (HFD). However, the molecular mechanisms involved in these effects mediated by miR-22 loss are unclear. METHODS AND RESULTS: Here, we show that miR-22 expression is induced during white, beige, and brown adipocyte differentiation in vitro. Deletion of miR-22 reduced white adipocyte differentiation in vitro. Loss of miR-22 prevented HFD-induced expression of adipogenic/lipogenic markers and adipocyte hypertrophy in murine WAT. In addition, deletion of miR-22 protected mice against HFD-induced mitochondrial dysfunction in WAT and BAT. Loss of miR-22 induced WAT browning. Gain- and loss-of-function studies revealed that miR-22 did not affect brown adipogenesis in vitro. Interestingly, miR-22 KO mice fed a HFD displayed increased expression of genes involved in thermogenesis and adrenergic signaling in BAT when compared to WT mice fed the same diet. CONCLUSIONS: Collectively, our findings suggest that loss of miR-22 attenuates fat accumulation in response to a HFD by reducing white adipocyte differentiation and increasing BAT activity, reinforcing miR-22 as a potential therapeutic target for obesity-related disorders.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , MicroRNAs/genética , Adipogenia/genética , Animais , Diferenciação Celular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Obesidade/genética , Obesidade/metabolismo
5.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023985

RESUMO

Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (GBM) treatment. This study consists of three parts: The first part evaluates the heating potential of aminosilane-coated superparamagnetic iron oxide nanoparticles (SPIONa). The second and third parts comprise the evaluation of MHT multiple applications in GBM model, either in vitro or in vivo. The obtained heating curves of SPIONa (100 nm, +20 mV) and their specific absorption rates (SAR) stablished the best therapeutic conditions for frequencies (309 kHz and 557 kHz) and magnetic field (300 Gauss), which were stablished based on three in vitro MHT application in C6 GBM cell line. The bioluminescence (BLI) signal decayed in all applications and parameters tested and 309 kHz with 300 Gauss have shown to provide the best therapeutic effect. These parameters were also established for three MHT applications in vivo, in which the decay of BLI signal correlates with reduced tumor and also with decreased tumor glucose uptake assessed by positron emission tomography (PET) images. The behavior assessment showed a slight improvement after each MHT therapy, but after three applications the motor function displayed a relevant and progressive improvement until the latest evaluation. Thus, MHT multiple applications allowed an almost total regression of the GBM tumor in vivo. However, futher evaluations after the therapy acute phase are necessary to follow the evolution or tumor total regression. BLI, positron emission tomography (PET), and spontaneous locomotion evaluation techniques were effective in longitudinally monitoring the therapeutic effects of the MHT technique.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/administração & dosagem , Silanos/química , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Glioblastoma/diagnóstico por imagem , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Masculino , Camundongos , Tamanho da Partícula , Tomografia por Emissão de Pósitrons , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mult Scler Relat Disord ; 35: 108-115, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31362166

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system. Its diagnosis is clinical, often confirmed by magnetic resonance imaging. This image modality, however, is not ideal for discrimination of demyelination in grey and white matter regions from inflammatory lesions. Positron Emission Tomography (PET), using specific radiopharmaceuticals, can be a tool to differentiate between these processes. The radiopharmaceutical [11C]PIB is widely used for detection of ß-amyloid plaques, but has also been suggested for the analysis of myelin content due to its consistent uptake in white matter. The aim of this study was to evaluate [11C]PIB PET imaging as a tool for detecting demyelinated regions in white and grey matter of non-human primate model of progressive MS. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in marmosets by injection of recombinant human myelin oligodendrocyte glycoprotein (rhMOG) emulsified in either Incomplete Freund's Adjuvant (IFA) or Complete Freund's Adjuvant (CFA). [11C]PIB PET images were acquired prior to immunization (baseline) and after symptoms were present (end of experiment). Brain tissue was isolated for histochemical analysis. RESULTS: All rhMOG/IFA-treated and rhMOG/CFA-treated animals showed clinical signs of EAE. The rhMOG/CFA group presented a significant [11C]PIB uptake reduction only in the left motor cortex (9%, P = 0.011). For the rhMOG/IFA group, significant decrease in [11C]PIB uptake was observed in the whole brain (15%, P = 0.015), in the right hemisphere of body of corpus callosum (34%, P = 0.02), splenium of corpus callosum (38%, P = 0.004), hippocampus (19%, P = 0.036), optic tract (13%, P = 0.025), thalamus (14%, P = 0.041), Globus pallidus (23%, P = 0.017), head of caudate nucleus (25%, P = 0.045), tail of caudate nucleus (29%, P = 0.003), putamen (28%, P = 0.047) and left hemisphere of body of corpus callosum (14%, P = 0.037) and head of caudate nucleus (23%, P = 0.023). [11C]PIB uptake significantly correlated with luxol fast blue histology (myelin marker), both in the rhMOG/IFA (r2= 0.32, P < 0.0001) and the rhMOG/CFA group (r2= 0.46, P < 0.0001). CONCLUSION: [11C]PIB PET imaging is an efficient tool for detecting demyelination in grey and white matter, in a non-human primate model of progressive MS.


Assuntos
Compostos de Anilina , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Tiazóis , Substância Branca/diagnóstico por imagem , Animais , Callithrix , Modelos Animais de Doenças , Feminino , Masculino , Tomografia por Emissão de Pósitrons
7.
J Cereb Blood Flow Metab ; 39(6): 989-1004, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29271291

RESUMO

Evidence suggests that exercise can modulate neuroinflammation and neuronal damage. We evaluated if such effects of exercise can be detected with positron emission tomography (PET) in a rat model of Parkinson's disease (PD). Rats were unilaterally injected in the striatum with 6-hydroxydopamine (PD rats) or saline (controls) and either remained sedentary (SED) or were forced to exercise three times per week for 40 min (EX). Motor and cognitive functions were evaluated by the open field, novel object recognition, and cylinder tests. At baseline, day 10 and 30, glial activation and dopamine synthesis were assessed by [11C]PBR28 and [18F]FDOPA PET, respectively. PET data were confirmed by immunohistochemical analysis of microglial (Iba-1) / astrocyte (GFAP) activation and tyrosine hydroxylase (TH). [11C]PBR28 PET showed increased glial activation in striatum and hippocampus of PD rats at day 10, which had resolved at day 30. Exercise completely suppressed glial activation. Imaging results correlated well with post-mortem Iba-1 staining, but not with GFAP staining. [18F]FDOPA PET, TH staining and behavioral tests indicate that 6-OHDA caused damage to dopaminergic neurons, which was partially prevented by exercise. These results show that exercise can modulate toxin-induced glial activation and neuronal damage, which can be monitored noninvasively by PET.


Assuntos
Neurônios Dopaminérgicos/patologia , Neuroglia/metabolismo , Doença de Parkinson/patologia , Condicionamento Físico Animal/fisiologia , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Oxidopamina/farmacologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Tomografia por Emissão de Pósitrons/métodos , Ratos , Fatores de Tempo
8.
CNS Neurosci Ther ; 25(1): 36-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29804326

RESUMO

INTRODUCTION: A possible target for stroke management is modulation of neuroinflammation. Evidence suggests that food components may exert anti-inflammatory properties and thus may reduce stroke-induced brain damage. AIM: To investigate the efficacy of a diet, containing anti-inflammatory ingredients, as treatment for focal ischemic brain damage induced by photothrombotic stroke in the somatosensory cortex of rats. RESULTS: Brain lesions were surrounded by strong astrogliosis on both day 7 and day 21 after stroke and were accompanied by a trend toward globally decreased glucose metabolism on day 7. The investigational diet applied 2 weeks before the ischemia did not affect astrocyte activation on day 7, but reduced it at day 21. The investigational diet applied immediately after the ischemia, increased astrocyte activation on day 7 and completely reversed this effect on day 21. Moreover, postischemic intervention increased glucose metabolism in somatosensory cortex ipsilateral to the lesion on day 7. CONCLUSION: This study reveals potentially beneficial effects of a diet containing elevated amounts of anti-inflammatory nutrients on the recovery from ischemic brain damage. Therefore, dietary intervention can be considered as an adjuvant therapy for recovery from this brain pathology.


Assuntos
Encéfalo/metabolismo , Inflamação/dietoterapia , Inflamação/metabolismo , Acidente Vascular Cerebral/dietoterapia , Acidente Vascular Cerebral/metabolismo , Animais , Animais não Endogâmicos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Isquemia Encefálica/dietoterapia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Gliose/dietoterapia , Gliose/metabolismo , Gliose/terapia , Glucose/metabolismo , Inflamação/terapia , Masculino , Atividade Motora , Distribuição Aleatória , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia
9.
Behav Brain Res ; 308: 64-74, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27126278

RESUMO

Short and long-term physical exercise induce physiological and structural changes in brain motor areas. The relationship between changes of structural and synaptic proteins in brain motor areas and acrobatic exercise is less understood. Our aim was to evaluate the expression of synapsin I (SYS), synaptophysin (SYP), microtubule-associated protein 2 (MAP2), neurofilament (NF), and a marker for recent neuronal activity (Egr-1) in the motor cortex, striatum and cerebellum of adult rats subjected to acrobatic exercise (AE, for 1-4 weeks). We used adult Wistar rats, divided into 4 groups based on duration of acrobatic training, namely 1 week (AE1, n=15), 2 weeks (AE2, n=15), 4 weeks (AE4, n=15), and sedentary (SED, n=15). In AE groups, the rats covered 5 times a circuit that was composed of obstacles, three times a week. The protein levels were analyzed by immunoblotting and immunohistochemistry. The results revealed that short-term AE (AE1 and AE2) induced MAP2 decreases and NF, SYP and Egr-1 increases in the motor cortex; an increase of MAP2, SYS and SYP in the dorsolateral striatum, whereas the dorsomedial striatum showed increased NF, SYS, SYP and Egr-1. Granular cerebellar layer showed increased NF and Egr-1, with increased NF and SYP in the molecular layer. Long-term AE (AE4) promoted an increase of MAP2, SYP and Egr-1 in motor cortex; MAP2, SYS and SYP in the dorsomedial striatum; and NF and Egr-1 in the cerebellar granular layer. In conclusion, our data suggest that different durations of AE induce distinct plastic responses among distinct cortical and subcortical circuits.


Assuntos
Córtex Motor/metabolismo , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Ratos , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Fatores de Tempo
10.
Brain Res ; 1624: 188-198, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26232571

RESUMO

A variety of exercise protocols have been used to promote experimental neuroplasticity. However, the plastic brain responses generated by several aspects of training (types, frequency, regimens, duration) remain undetermined. The aim of this study was to compare the plastic changes in the glutamatergic system and synaptic proteins in motor cortex, striatum and cerebellum promoted by two different treadmill exercise regimens. The present study analyzed by immunohistochemistry and Western blotting the expression of the subunits of AMPA receptors (GluA1 and GluA2/3) and synaptic proteins (synapsin I and synaptophysin) in adult male Wistar rat brains. The animals were divided into animals subjected to two different frequencies of aerobic exercise groups and sedentary animals. The exercise groups were: intermittent treadmill exercise (ITE) - animals that exercised 3 times a week (every other day) during four weeks, and continuous treadmill exercise (CTE) - animals that exercised every day during four weeks. Our results reveal that different protocols of treadmill exercise were able to promote distinct synaptic reorganization processes among the exercised groups. In general, the intermittent exercise regimen induced a higher expression of presynaptic proteins, whereas the continuous exercise regimen increased postsynaptic GluA1 and GluA2/3 receptors.


Assuntos
Encéfalo/fisiologia , Vias Eferentes/fisiologia , Regulação da Expressão Gênica/fisiologia , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/fisiologia , Análise de Variância , Animais , Corticosterona/sangue , Teste de Esforço , Masculino , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Sinapsinas/metabolismo , Sinaptofisina/metabolismo
11.
PLoS One ; 8(10): e76874, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116178

RESUMO

The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson's Disease (PD). Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP), internal globus pallidus (IGP) and substantia nigra pars reticulata (SNpr) of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH), parvalbumin, calbindin and glutamic acid decarboxylase (GAD) expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model.


Assuntos
Gânglios da Base/metabolismo , Globo Pálido/metabolismo , Neostriado/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Substância Negra/metabolismo , Animais , Calbindinas/metabolismo , Immunoblotting , Imuno-Histoquímica , Masculino , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 34(supl.2): s194-s205, Oct. 2012.
Artigo em Inglês | LILACS | ID: lil-662767

RESUMO

Neurodegenerative disorders are undoubtedly an increasing problem in the health sciences, given the increase of life expectancy and occasional vicious life style. Despite the fact that the mechanisms of such diseases are far from being completely understood, a large number of studies that derive from both the basic science and clinical approaches have contributed substantial data in that direction. In this review, it is discussed several frontiers of basic research on Parkinson´s and Alzheimer´s diseases, in which research groups from three departments of the Institute of Biomedical Sciences of the University of São Paulo have been involved in a multidisciplinary effort. The main focus of the review involves the animal models that have been developed to study cellular and molecular aspects of those neurodegenerative diseases, including oxidative stress, insulin signaling and proteomic analyses, among others. We anticipate that this review will help the group determine future directions of joint research in the field and, more importantly, set the level of cooperation we plan to develop in collaboration with colleagues of the Nucleus for Applied Neuroscience Research that are mostly involved with clinical research in the same field.


Os transtornos neurodegenerativos são, sem dúvida, um problema crescente nas ciências da saúde, dado o aumento da expectativa de vida e de estilos de vida pouco saudáveis. Embora os mecanismos de tais doenças ainda estejam longe de ser esclarecidos, vários estudos que derivam tanto da ciência básica quanto de abordagens clínicas contribuíram nessa direção. Na presente revisão, são discutidas linhas de frente da pesquisa básica sobre as doenças de Parkinson e Alzheimer, em que grupos de pesquisas de três departamentos do Instituto de Ciências Biomédicas da Universidade de São Paulo estão envolvidos em um esforço multidisciplinar. O foco principal desta revisão envolve os modelos animais desenvolvidos para se estudar os aspectos celulares e moleculares daquelas doenças neurodegenerativas, incluindo o estresse oxidativo, a sinalização da insulina e as análises proteômicas, dentre outros. Antecipamos que esta revisão irá auxiliar o grupo a determinar as futuras direções da pesquisa conjunta nessa área e, o mais importante, estabelecer o nível de cooperação que planejamos desenvolver juntamente com colegas do Núcleo de Apoio à Pesquisa em Neurociência Aplicada que estão envolvidos com pesquisa clínica na mesma área.


Assuntos
Animais , Humanos , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/etiologia , Biomarcadores/análise , Encéfalo/patologia , Modelos Animais de Doenças , Exercício Físico/fisiologia , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/etiologia , Peptídeos/análise , Proteômica
13.
Brain Res ; 1456: 36-48, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22521043

RESUMO

The plastic brain responses generated by the training with acrobatic exercise (AE) and with treadmill exercise (TE) may be different. We evaluated the protein expression of synapsin I (SYS), synaptophysin (SYP), microtubule-associated protein 2 (MAP2) and neurofilaments (NF) by immunohistochemistry and Western blotting in the motor cortex, striatum and cerebellum of rats subjected to TE and AE. Young adult male Wistar rats were divided into 3 groups: sedentary (Sed) (n=15), TE (n=20) and AE (n=20). The rats were trained 3 days/week for 4 weeks on a treadmill at 0.6 km/h, 40 min/day (TE), or moved through a circuit of obstacles 5 times/day (AE). The rats from the TE group exhibited a significant increase of SYS and SYP in the motor cortex, of NF68, SYS and SYP in the striatum, and of MAP2, NF and SYS in the cerebellum, whereas NF was decreased in the motor cortex and the molecular layer of the cerebellar cortex. On the other hand, the rats from the AE group showed a significant increase of MAP2 and SYP in the motor cortex, of all four proteins in the striatum, and of SYS in the cerebellum. In conclusion, AE induced changes in the expression of synaptic and structural proteins mainly in the motor cortex and striatum, which may underlie part of the learning of complex motor tasks. TE, on the other hand, promoted more robust changes of structural proteins in all three regions, especially in the cerebellum, which is involved in learned and automatic tasks.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Condicionamento Físico Animal/fisiologia , Animais , Western Blotting , Imuno-Histoquímica , Masculino , Proteínas do Tecido Nervoso/análise , Ratos , Ratos Wistar , Sinapses/metabolismo
14.
Braz J Psychiatry ; 34 Suppl 2: S194-205, 2012 Oct.
Artigo em Inglês, Português | MEDLINE | ID: mdl-23429847

RESUMO

Neurodegenerative disorders are undoubtedly an increasing problem in the health sciences, given the increase of life expectancy and occasional vicious life style. Despite the fact that the mechanisms of such diseases are far from being completely understood, a large number of studies that derive from both the basic science and clinical approaches have contributed substantial data in that direction. In this review, it is discussed several frontiers of basic research on Parkinson's and Alzheimer's diseases, in which research groups from three departments of the Institute of Biomedical Sciences of the University of São Paulo have been involved in a multidisciplinary effort. The main focus of the review involves the animal models that have been developed to study cellular and molecular aspects of those neurodegenerative diseases, including oxidative stress, insulin signaling and proteomic analyses, among others. We anticipate that this review will help the group determine future directions of joint research in the field and, more importantly, set the level of cooperation we plan to develop in collaboration with colleagues of the Nucleus for Applied Neuroscience Research that are mostly involved with clinical research in the same field.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/etiologia , Animais , Biomarcadores/análise , Encéfalo/patologia , Modelos Animais de Doenças , Exercício Físico/fisiologia , Humanos , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/etiologia , Peptídeos/análise , Proteômica
15.
Brain Res ; 1425: 111-22, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22035567

RESUMO

Exercise is known to improve cognitive functions and to induce neuroprotection. In this study we used a short-term, moderate intensity treadmill exercise protocol to investigate the effects of exercise on usual markers of hippocampal synaptic and structural plasticity, such as synapsin I (SYN), synaptophysin (SYP), neurofilaments (NF), microtubule-associated protein 2 (MAP2), glutamate receptor subunits GluR1 and GluR2/3, brain-derived neurotrophic factor (BDNF) and glial fibrillary acidic protein (GFAP). Immunohistochemistry, Western blotting and real-time PCR were used. We also evaluated the number of cells positive for the proliferation marker 5-bromo-2-deoxyuridine (BrdU), the neurogenesis marker doublecortin (DCX) and the plasma corticosterone levels. Adult male Wistar rats were adapted to a treadmill and divided into 4 groups: sedentary (SED), 3-day exercise (EX3), 7-day exercise (EX7) and 15-day exercise (EX15). The protein changes detected were increased levels of NF68 and MAP2 at EX3, of SYN at EX7 and of GFAP at EX15, accompanied by a decreased level of GluR1 at EX3. Immunohistochemical findings revealed a similar pattern of changes. The real-time PCR analysis disclosed only an increase of MAP2 mRNA at EX7. We also observed an increased number of BrdU-positive cells and DCX-positive cells in the subgranular zone of the dentate gyrus at all time points and increased corticosterone levels at EX3 and EX7. These results reveal a positive effect of short-term, moderate treadmill exercise on hippocampal plasticity. This effect was in general independent of transcriptional processes and of BDNF upregulation, and occurred even in the presence of increased corticosterone levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Hipocampo/citologia , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Proteína Duplacortina , Masculino , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar , Fatores de Tempo
16.
Brain Res ; 1361: 31-42, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-20858463

RESUMO

Physical exercise is known to enhance brain function in several aspects. We evaluated the acute effects of a moderate forced exercise protocol on synaptic proteins, namely synapsin I (SYN) and synaptophysin (SYP), and structural proteins (neurofilaments, NFs) in rat brain regions related to motor function and often affected by neurodegenerative disorders. Immunohistochemistry, Western blotting and real-time PCR were used to analyze the expression of those proteins after 3, 7 and 15days of exercise (EX3, EX7 and EX15). In the cerebellum, increase of SYN was observed at EX7 and EX15 and of NF68 at EX3. In the substantia nigra, increases of protein levels were observed for NF68 and NF160 at EX3. In the striatum, there was an increase of SYN at EX3 and EX7, of SYP at EX7 and of NF68 at EX3. In the cortex, decreased levels of NF68 and NF160 were observed at EX3, followed by an increase of NF68 at EX15. In the reticular formation, all NF proteins were increased at EX15. The mRNA data for each time-point and region also revealed significant exercise-related changes of SYN, SYP and NF expression. These results suggest that moderate physical exercise modulates synaptic and structural proteins in motor brain areas, which may play an important role in the exercise-dependent brain plasticity.


Assuntos
Encéfalo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Condicionamento Físico Animal/fisiologia , RNA Mensageiro/metabolismo , Animais , Western Blotting , Cerebelo/metabolismo , Corpo Estriado/metabolismo , Proteínas do Citoesqueleto/genética , Imuno-Histoquímica , Masculino , Córtex Motor/metabolismo , Proteínas de Neurofilamentos/metabolismo , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Formação Reticular/metabolismo , Substância Negra/metabolismo , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Fatores de Tempo , Regulação para Cima
17.
Brain Res ; 1363: 63-71, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-20869354

RESUMO

The aim of this study was to analyze the plastic effects of moderate exercise upon the motor cortex (M1 and M2 areas), cerebellum (Cb), and striatum (CPu) of the rat brain. This assessment was made by verifying the expression of AMPA-type glutamate receptor subunits (GluR1 and GluR2/3). We used adult Wistar rats, divided into 5 groups based on duration of exercise training, namely 3 days (EX3), 7 days (EX7), 15 days (EX15), 30 days (EX30), and sedentary (S). The exercised animals were subjected to a treadmill exercise protocol at the speed of the 10 meters/min for 40 min. After exercise, the brains were subjected to immunohistochemistry and immunoblotting to analyze changes of GluR1 and GluR2/3, and plasma corticosterone was measured by ELISA in order to verify potential stress induced by physical training. Overall, the results of immunohistochemistry and immunoblotting were similar and revealed that GluR subunits show distinct responses over the exercise periods and for the different structures analyzed. In general, there was increased expression of GluR subunits after longer exercise periods (such as EX30), although some opposite effects were seen after short periods of exercise (EX3). In a few cases, biphasic patterns with decreases and subsequent increases of GluR expression were seen and may represent the outcome of exercise-dependent, complex regulatory processes. The data show that the protocol used was able to promote plastic GluR changes during exercise, suggesting a specific involvement of these receptors in exercise-induced plasticity processes in the brain areas tested.


Assuntos
Encéfalo/fisiologia , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/fisiologia , Receptores de AMPA/metabolismo , Animais , Cerebelo/fisiologia , Corpo Estriado/fisiologia , Imuno-Histoquímica , Masculino , Córtex Motor/fisiologia , Ratos , Ratos Wistar , Corrida/fisiologia
18.
Neurosci Lett ; 478(3): 146-9, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20466035

RESUMO

Aging can lead to cognitive, affective, learning, memory and motor deficits. Since the cerebellum and glutamatergic neurotransmission are involved in several of those functions, the present work aimed at studying the expression of AMPA and NMDA glutamate receptor subunits in the chick cerebellum during aging. Young (30 days old) and aged (ca. 4 years old) chickens (Gallus gallus) were used in order to evaluate the expression of GluR1, GluR2/3 and NR1 subunits. The cerebella of young and aged chickens were subjected to immunohistochemical and immunoblotting techniques. Numbers of GluR1, GluR2/3 and NR1-positive cells and optical density of the immunoblotting data were analyzed and submitted to statistical analysis using ANOVA and the Bonferroni post hoc test. Mean density of Purkinje cells stained for Giemsa, GluR1, GluR2/3 and NR1 in the cerebellum all showed a statistically significant decrease in aged animals when compared to the young animals (Giemsa, P<0.01; GluRs and NR1, P<0.03). However, the ratio of GluR1 and GluR2/3-positive Purkinje cells in relation the total number of Purkinje cells found in each time point decreased with aging (ca. 10%), whereas the ratio of NR1-positive cells increased (ca. 9%). The immunoblotting data showed a significant decrease of GluR1 (ca. 66%) and GluR2/3 (ca. 55%) protein expression with aging, but did not reveal changes for NR1. Our data suggest that aging can lead to differential changes in the pattern of expression of glutamate receptor subunits, which can underlie at least part of the cognitive and motor disorders found in aged animals.


Assuntos
Envelhecimento/metabolismo , Proteínas Aviárias/metabolismo , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Envelhecimento/patologia , Animais , Contagem de Células , Cerebelo/patologia , Galinhas , Immunoblotting , Imuno-Histoquímica , Células de Purkinje/patologia , Receptores de Glutamato Metabotrópico/metabolismo
19.
Brain Res ; 1096(1): 11-9, 2006 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16730338

RESUMO

Several molecules, involved in cellular communication in the mature nervous system, appear to play important roles during neural development. These roles include neuronal growth, morphological changes of neurites, and neuronal survival. Such plasticity processes seem to be in part the result of activation of different receptor subtypes, which could cause Ca(2+) influx, a major candidate to be an outgrowth promoter. In this context, we performed immunohistochemical and in situ hybridization experiments to examine the following aspects of the development of chick cerebellum Purkinje cells: (i) expression of AMPA-type glutamate receptor GluR2/3 proteins; (ii) the levels of mRNAs coding for the GluR2 and GluR3 flip/flop isoforms; and (iii) expression of calbindin (CB) and parvalbumin (PV). Expression of GluR2/3 proteins, CB, PV, and the mRNAs coding for GluR2 and GluR3 splice variants all revealed a differential expression during development in chick Purkinje cells. GluR2/3 proteins and the GluR3 flop variant start to be expressed at E10, while the expression of CB, PV, the GluR3 flip isoform and the splice variants of GluR2 all started around E12-E14. All proteins showed an increasing expression from embryonic stages into the posthatching period. These results reveal a developmentally regulated expression of GluR2/3 proteins, including their splice variants, and of CB and PV in Purkinje cells. These findings may suggest a relationship between these proteins and specific cerebellar developmental processes.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Receptores de AMPA/biossíntese , Animais , Calbindinas , Cerebelo/citologia , Embrião de Galinha , Imuno-Histoquímica , Hibridização In Situ , Parvalbuminas/biossíntese , Células de Purkinje/ultraestrutura , RNA Mensageiro/biossíntese , Proteína G de Ligação ao Cálcio S100/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...