Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 327(1): H80-H88, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787379

RESUMO

This study investigated the sensitivity and specificity of identifying heart failure with reduced ejection fraction (HFrEF) from measurements of the intensity and timing of arterial pulse waves. Previously validated methods combining ultrafast B-mode ultrasound, plane-wave transmission, singular value decomposition (SVD), and speckle tracking were used to characterize the compression and decompression ("S" and "D") waves occurring in early and late systole, respectively, in the carotid arteries of outpatients with left ventricular ejection fraction (LVEF) < 40%, determined by echocardiography, and signs and symptoms of heart failure, or with LVEF ≥ 50% and no signs or symptoms of heart failure. On average, the HFrEF group had significantly reduced S-wave intensity and energy, a greater interval between the R wave of the ECG and the S wave, a reduced interval between the S and D waves, and an increase in the S-wave shift (SWS), a novel metric that characterizes the shift in timing of the S wave away from the R wave of the ECG and toward the D wave (all P < 0.01). Receiver operating characteristics (ROCs) were used to quantify for the first time how well wave metrics classified individual participants. S-wave intensity and energy gave areas under the ROC of 0.76-0.83, the ECG-S-wave interval gave 0.85-0.88, and the S-wave shift gave 0.88-0.92. Hence the methods, which are simple to use and do not require complex interpretation, provide sensitive and specific identification of HFrEF. If similar results were obtained in primary care, they could form the basis of techniques for heart failure screening.NEW & NOTEWORTHY We show that heart failure with reduced ejection fraction can be detected with excellent sensitivity and specificity in individual patients by using B-mode ultrasound to detect altered pulse wave intensity and timing in the carotid artery.


Assuntos
Insuficiência Cardíaca , Análise de Onda de Pulso , Volume Sistólico , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiopatologia , Função Ventricular Esquerda , Valor Preditivo dos Testes , Eletrocardiografia , Ecocardiografia , Curva ROC
2.
Front Bioeng Biotechnol ; 9: 737055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004634

RESUMO

Heart failure is treatable, but in the United Kingdom, the 1-, 5- and 10-year mortality rates are 24.1, 54.5 and 75.5%, respectively. The poor prognosis reflects, in part, the lack of specific, simple and affordable diagnostic techniques; the disease is often advanced by the time a diagnosis is made. Previous studies have demonstrated that certain metrics derived from pressure-velocity-based wave intensity analysis are significantly altered in the presence of impaired heart performance when averaged over groups, but to date, no study has examined the diagnostic potential of wave intensity on an individual basis, and, additionally, the pressure waveform can only be obtained accurately using invasive methods, which has inhibited clinical adoption. Here, we investigate whether a new form of wave intensity based on noninvasive measurements of arterial diameter and velocity can detect impaired heart performance in an individual. To do so, we have generated a virtual population of two-thousand elderly subjects, modelling half as healthy controls and half with an impaired stroke volume. All metrics derived from the diameter-velocity-based wave intensity waveforms in the carotid, brachial and radial arteries showed significant crossover between groups-no one metric in any artery could reliably indicate whether a subject's stroke volume was normal or impaired. However, after applying machine learning to the metrics, we found that a support vector classifier could simultaneously achieve up to 99% recall and 95% precision. We conclude that noninvasive wave intensity analysis has significant potential to improve heart failure screening and diagnosis.

3.
Proc Inst Mech Eng H ; 234(11): 1260-1276, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32650691

RESUMO

Pressure-velocity-based analysis of arterial wave intensity gives clinically relevant information about the performance of the heart and vessels, but its utility is limited because accurate pressure measurements can only be obtained invasively. Diameter-velocity-based wave intensity can be obtained noninvasively using ultrasound; however, due to the nonlinear relationship between blood pressure and arterial diameter, the two wave intensities might give disparate clinical indications. To test the magnitude of the disagreement, we have generated an age-stratified virtual population to investigate how the two dominant nonlinearities viscoelasticity and strain-stiffening cause the two formulations to differ. We found strong agreement between the pressure-velocity and diameter-velocity methods, particularly for the systolic wave energy, the ratio between systolic and diastolic wave heights, and older subjects. The results are promising regarding the introduction of noninvasive wave intensities in the clinic.


Assuntos
Artérias , Adulto , Artérias/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Humanos , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...